基于材料生成优化的BP神经网络(分类应用) - 附代码

基于材料生成优化的BP神经网络(分类应用) - 附代码

文章目录

摘要:本文主要介绍如何用材料生成算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1 特征2 特征3 类别
单组iris数据 5.3 2.1 1.2 1

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组) 测试集(组) 总数据(组)
105 45 150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.材料生成优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:


图1.神经网络结构

神经网络参数如下:

matlab 复制代码
%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 材料生成算法应用

材料生成算法原理请参考:https://blog.csdn.net/u011835903/article/details/124221652

材料生成算法的参数设置为:

matlab 复制代码
popsize = 10;%种群数量
    Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)

其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从材料生成算法的收敛曲线可以看到,整体误差是不断下降的,说明材料生成算法起到了优化的作用:


5.Matlab代码

相关推荐
量子位5 分钟前
字节开源新生图模型:一个模型统一所有生图任务,多主体融合效果 SOTA
人工智能·llm·aigc
hwoss5 分钟前
Dify看这篇教你快速上手
人工智能·后端
掘金安东尼14 分钟前
🧠什么样的智能体才算“真正能干活”?
人工智能·llm·github
掘金安东尼32 分钟前
🚀模型训练部署移动云平台全链路流程图(含推理 API 接入)
人工智能
墨绿色的摆渡人32 分钟前
pytorch小记(十六):PyTorch中的`nn.Identity()`详解:灵活模型设计的秘密武器
人工智能·pytorch·python
zidea41 分钟前
MCP SDK 源码随处可见的 Python 上下文管理器,优雅的资源管理利器
人工智能·aigc·mcp
一只专注api接口开发的技术猿1 小时前
淘宝API驱动跨境选品:多语言详情页自动翻译与本地化定价
人工智能·自然语言处理·机器翻译
新加坡内哥谈技术1 小时前
Llama 4的争议
人工智能·深度学习·语言模型·自然语言处理·自动化·llama
www_pp_1 小时前
# 利用OpenCV和Dlib实现疲劳检测:守护安全与专注
人工智能·opencv·计算机视觉