C++11——多线程

目录

一.thread类的简单介绍

二.线程函数参数

三.原子性操作库(atomic)

四.lock_guard与unique_lock

1.lock_guard

2.unique_lock

五.条件变量


一.thread类的简单介绍

在C++11之前,涉及到多线程问题,都是和平台相关的,比如windows和linux下各有自己的接
口,这使得代码的可移植性比较差。C++11中最重要的特性就是对线程进行支持了,使得C++在
并行编程时不需要依赖第三方库
,而且在原子操作中还引入了原子类的概念。要使用标准库中的

线程,必须包含< thread >头文件。

|-------------------------------|-------------------------------------------------------------|
| 函数名 | 功能 |
| thread() | 构造一个线程对象,没有关联任何线程函数,即没有启动任何线程 |
| thread(fn, args1, args2, ...) | 构造一个线程对象,并关联线程函数fn,args1,args2,...为线程函数的参数 |
| get_id() | 获取线程id |
| jionable() | 线程是否还在执行,joinable代表的是一个正在执行中的线程。 |
| jion() | 该函数调用后会阻塞住线程,当该线程结束后,主线程继续执行 |
| detach() | 在创建线程对象后马上调用,用于把被创建线程与线程对象分离开,分离的线程变为后台线程,创建的线程的"死活"就与主线程无关 |

注意:

  1. 线程是操作系统中的一个概念,线程对象可以关联一个线程,用来控制线程以及获取线程的
    状态。

  2. 当创建一个线程对象后,没有提供线程函数,该对象实际没有对应任何线程。

get_id()的返回值类型为id类型,id类型实际为std::thread命名空间下封装的一个类,该类中

包含了一个结构体:

cpp 复制代码
// vs下查看
typedef struct
{ /* thread identifier for Win32 */
	void* _Hnd; /* Win32 HANDLE */
	unsigned int _Id;
} _Thrd_imp_t;

3.当创建一个线程对象后,并且给线程关联线程函数,该线程就被启动,与主线程一起运行。

线程函数一般情况下可按照以下三种方式提供:

  1. 函数指针
  2. lambda表达式
  3. 函数对象
cpp 复制代码
#include<iostream>
#include<thread>
#include<string>
using namespace std;

void func1(string str)
{
	cout << str << endl;
}
struct func2
{
	void operator()(string str)
	{
		cout << str << endl;
	}
};

int main()
{
	std::thread t1(func1, "函数指针");
	std::thread t2(func2(), "仿函数");
	std::thread t3([](string str){cout << str << endl; }, "lambda");
	t1.join();
	t2.join();
	t3.join();
	return 0;
}
  1. thread类是防拷贝的,不允许拷贝构造以及赋值,但是可以移动构造和移动赋值,即将一个

线程对象关联线程的状态转移给其他线程对象,转移期间不意向线程的执行。

  1. 可以通过jionable()函数判断线程是否是有效的,如果是以下任意情况,则线程无效

  2. 采用无参构造函数构造的线程对象

  3. 线程对象的状态已经转移给其他线程对象

  4. 线程已经调用jion或者detach结束

二.线程函数参数

线程函数的参数是以值拷贝的方式拷贝到线程栈空间 中的,因此:即使线程参数为引用类型,在
线程中修改后也不能修改外部实参,因为其实际引用的是线程栈中的拷贝,而不是外部实参。

如果想要通过形参改变外部实参时,必须借助std::ref()函数,或者使用指针:

cpp 复制代码
#include <thread>
void ThreadFunc1(int& x)
{
	x += 10;
}
void ThreadFunc2(int* x)
{
	*x += 10;
}
int main()
{
	int a = 10;
	int b = 10;
	// 如果想要通过形参改变外部实参时,必须借助std::ref()函数
	thread t2(ThreadFunc1, std::ref(a));
	t2.join();
	cout << a << endl;
	 //地址的拷贝
	thread t3(ThreadFunc2, &b);
	t3.join();
	cout << b << endl;
	return 0;
}

注意:如果是类成员函数作为线程参数时,必须将this作为线程函数参数。

三.原子性操作库(atomic)

多线程最主要的问题是共享数据带来的问题(即线程安全)。如果共享数据都是只读的,那么没问

题,因为只读操作不会影响到数据,更不会涉及对数据的修改,所以所有线程都会获得同样的数

据。但是,当一个或多个线程要修改共享数据时,就会产生很多潜在的麻烦。比如:

两个线程分别进行100000次的++操作:

cpp 复制代码
#include <iostream>
#include <thread>
using namespace std;
unsigned long sum = 0;

void fun(size_t num)
{
	for (size_t i = 0; i < num; ++i)
		sum++;
}
int main()
{
	cout << "Before joining,sum = " << sum << std::endl;
	thread t1(fun, 1000000);
	thread t2(fun, 1000000);
	t1.join();
	t2.join();
	cout << "After joining,sum = " << sum << std::endl;
	return 0;
}

我们首先想到的解决办法就是加锁,但是加锁有一个缺陷就是:只要一个线程在对sum++时,其他线程就会被阻塞,会影响程序运行的效率,而且锁如果控制不好,还容易造成死锁。

因此C++11中引入了原子操作。所谓原子操作:即不可被中断的一个或一系列操作,C++11引入
的原子操作类型,使得线程间数据的同步变得非常高效,原子操作头文件<atomic>。

例如:

cpp 复制代码
#include <iostream>
#include <thread>
#include<atomic>
using namespace std;
//unsigned long sum = 0;
atomic_int sum = 0;

void fun(size_t num)
{
	for (size_t i = 0; i < num; ++i)
		sum++;
}
int main()
{
	cout << "Before joining,sum = " << sum << std::endl;
	thread t1(fun, 1000000);
	thread t2(fun, 1000000);
	t1.join();
	t2.join();
	cout << "After joining,sum = " << sum << std::endl;
	return 0;
}

在C++11中,程序员不需要对原子类型变量进行加锁解锁操作,线程能够对原子类型变量互斥的
访问。

更为普遍的,程序员可以使用atomic类模板,定义出需要的任意原子类型。

cpp 复制代码
atmoic<T> t;   // 声明一个类型为T的原子类型变量t
cpp 复制代码
#include <atomic>
int main()
{
atomic<int> a1(0);
//atomic<int> a2(a1);  // 编译失败
atomic<int> a2(0);
//a2 = a1;        // 编译失败
return 0;
}

注意:原子类型通常属于"资源型"数据,多个线程只能访问单个原子类型的拷贝,因此在C++11
中,原子类型只能从其模板参数中进行构造,不允许原子类型进行拷贝构造、移动构造以及
operator=等,为了防止意外,标准库已经将atmoic模板类中的拷贝构造、移动构造、赋值运算
符重载默认删除掉了。

四.lock_guard与unique_lock

在多线程环境下,如果想要保证某个变量的安全性,只要将其设置成对应的原子类型即可,即高
效又不容易出现死锁问题。但是有些情况下,我们可能需要保证一段代码的安全性,那么就只能
通过锁的方式来进行控制。

比如:一个线程对变量number进行加一100次,另外一个减一100次,每次操作加一或者减一之

后,输出number的结果,要求:number最后的值为1。

cpp 复制代码
#include <thread>
#include <mutex>
int number = 0;
mutex g_lock;
int ThreadProc1()
{
	for (int i = 0; i < 100; i++)
	{
		g_lock.lock();
		++number;
		cout << "thread 1 :" << number << endl;
		g_lock.unlock();
	}
	return 0;
}
int ThreadProc2()
{
	for (int i = 0; i < 100; i++)
	{
		g_lock.lock();
		--number;
		cout << "thread 2 :" << number << endl;
		g_lock.unlock();
	}
	return 0;
}

int main()
{
	thread t1(ThreadProc1);
	thread t2(ThreadProc2);
	t1.join();
	t2.join();
	cout << "number:" << number << endl;
	system("pause");
	return 0;
}

上述代码的缺陷:**锁控制不好时,可能会造成死锁,最常见的比如在锁中间代码返回,或者在锁
的范围内抛异常。**因此:C++11采用RAII的方式对锁进行了封装,即lock_guard和unique_lock。

lock_guard定义如下:

cpp 复制代码
template<class _Mutex>
class lock_guard
{
public:
	// 在构造lock_gard时,_Mtx还没有被上锁
	explicit lock_guard(_Mutex& _Mtx)
		: _MyMutex(_Mtx)
	{
		_MyMutex.lock();
	}
	// 在构造lock_gard时,_Mtx已经被上锁,此处不需要再上锁
	lock_guard(_Mutex& _Mtx, adopt_lock_t)
		: _MyMutex(_Mtx)
	{}
	~lock_guard() _NOEXCEPT
	{
		_MyMutex.unlock();
	}
	lock_guard(const lock_guard&) = delete;
	lock_guard& operator=(const lock_guard&) = delete;
private:
	_Mutex& _MyMutex;
};

1.lock_guard

通过上述代码可以看到,lock_guard类模板主要是通过RAII的方式,对其管理的互斥量进行了封

装,在需要加锁的地方,只需要用上述介绍的任意互斥体实例化一个lock_guard,调用构造函数
成功上锁,出作用域前,lock_guard对象要被销毁,调用析构函数自动解锁,可以有效避免死锁
问题。

改造上述代码:

cpp 复制代码
#include <thread>
#include <mutex>
int number = 0;
mutex g_lock;
int ThreadProc1()
{
	for (int i = 0; i < 100; i++)
	{
		lock_guard<mutex> lock(g_lock);//调用构造加锁,出作用域自动解锁
		++number;
		cout << "thread 1 :" << number << endl;
		
	}
	return 0;
}
int ThreadProc2()
{
	for (int i = 0; i < 100; i++)
	{
		lock_guard<mutex> lock(g_lock);//调用构造加锁,出作用域自动解锁
		--number;
		cout << "thread 2 :" << number << endl;
	}
	return 0;
}

int main()
{
	thread t1(ThreadProc1);
	thread t2(ThreadProc2);
	t1.join();
	t2.join();
	cout << "number:" << number << endl;
	system("pause");
	return 0;
}

lock_guard的缺陷:太单一,用户没有办法对该锁进行控制,因此C++11又提供了unique_lock。

2.unique_lock

与lock_gard类似,unique_lock类模板也是采用RAII的方式对锁进行了封装,并且也是以独占所有权的方式管理mutex对象的上锁和解锁操作,即其对象之间不能发生拷贝。在构造(或移动(move)赋值)时,unique_lock 对象需要传递一个 Mutex 对象作为它的参数,新创建的unique_lock 对象负责传入的 Mutex 对象的上锁和解锁操作。使用以上类型互斥量实例化unique_lock的对象时,自动调用构造函数上锁,unique_lock对象销毁时自动调用析构函数解锁,可以很方便的防止死锁问题。

与lock_guard不同的是,unique_lock更加的灵活,提供了更多的成员函数:

  1. 上锁/解锁操作:lock、try_lock、try_lock_for、try_lock_until和unlock。
  2. 修改操作:移动赋值、交换(swap:与另一个unique_lock对象互换所管理的互斥量所有权)、释放(release:返回它所管理的互斥量对象的指针,并释放所有权)。
  3. 获取属性:owns_lock(返回当前对象是否上了锁)、operator bool()(与owns_lock()的功能相同)、mutex(返回当前unique_lock所管理的互斥量的指针)。

五.条件变量

对条件变量的熟悉我们linux互斥与同步已经讲过了,他们用来进行线程之间的互相通知。condition_variable和Linux posix的条件变量并没有什么大的区别,主要还是面向对象实现的。

例如:使用两个线程,两个线程交替打印奇数和偶数:

cpp 复制代码
#include<mutex>
#include<condition_variable>
mutex g_lock;//锁
condition_variable cond;//条件变量

int num = 1;

//打印奇数
void Func1(int n)
{
	for (int i = 1; i <= n; i++)
	{
		unique_lock<mutex> mutex(g_lock);
		if (num % 2 == 0)
		{
			cond.wait(mutex);
		}
		cout << "thread1: " << num++ << endl;
		cond.notify_one();
	}
}

//打印偶数
void Func2(int n)
{
	for (int i = 1; i <= n; i++)
	{
		unique_lock<mutex> mutex(g_lock);
		if (num % 2 == 1)
		{
			cond.wait(mutex);
		}
		cout << "thread2: " << num++ << endl;
		cond.notify_one();
	}
}
int main()
{
	thread t1(Func1, 100);
	thread t2(Func2, 100);

	t1.join();
	t2.join();

	return 0;
}
相关推荐
通信仿真实验室19 分钟前
(10)MATLAB莱斯(Rician)衰落信道仿真1
开发语言·matlab
勿语&22 分钟前
Element-UI Plus 暗黑主题切换及自定义主题色
开发语言·javascript·ui
家有狸花1 小时前
VSCODE驯服日记(三):配置C++环境
c++·ide·vscode
dengqingrui1232 小时前
【树形DP】AT_dp_p Independent Set 题解
c++·学习·算法·深度优先·图论·dp
C++忠实粉丝2 小时前
前缀和(8)_矩阵区域和
数据结构·c++·线性代数·算法·矩阵
ZZZ_O^O2 小时前
二分查找算法——寻找旋转排序数组中的最小值&点名
数据结构·c++·学习·算法·二叉树
吾爱星辰4 小时前
Kotlin 处理字符串和正则表达式(二十一)
java·开发语言·jvm·正则表达式·kotlin
ChinaDragonDreamer4 小时前
Kotlin:2.0.20 的新特性
android·开发语言·kotlin
IT良4 小时前
c#增删改查 (数据操作的基础)
开发语言·c#
小飞猪Jay5 小时前
C++面试速通宝典——13
jvm·c++·面试