自然语言处理---Transformer机制详解之GPT模型介绍

1 GPT介绍

  • GPT是OpenAI公司提出的一种语言预训练模型.

  • OpenAI在论文<< Improving Language Understanding by Generative Pre-Training >>中提出GPT模型.

  • OpenAI后续又在论文<< Language Models are Unsupervised Multitask Learners >>中提出GPT2模型.

  • GPT和GPT2模型结构差别不大, 但是GPT2采用了更大的数据集进行训练.

  • OpenAI GPT模型是在Google BERT模型之前提出的, 与BERT最大的区别在于GPT采用了传统的语言模型方法进行预训练, 即使用单词的上文来预测单词, 而BERT是采用了双向上下文的信息共同来预测单词.

  • 正是因为训练方法上的区别, 使得GPT更擅长处理自然语言生成任务(NLG), 而BERT更擅长处理自然语言理解任务(NLU).

2 GPT的架构

  • 看三个语言模型的对比架构图, 中间的就是GPT:
  • 从上图可以很清楚的看到GPT采用的是单向Transformer模型, 例如给定一个句子[u1, u2, ..., un], GPT在预测单词ui的时候只会利用[u1, u2, ..., u(i-1)]的信息, 而BERT会同时利用上下文的信息[u1, u2, ..., u(i-1), u(i+1), ..., un].

  • 作为两大模型的直接对比, BERT采用了Transformer的Encoder模块, 而GPT采用了Transformer的Decoder模块. 并且GPT的Decoder Block和经典Transformer Decoder Block还有所不同, 如下图所示:

  • 如上图所示, 经典的Transformer Decoder Block包含3个子层, 分别是Masked Multi-Head Attention层, encoder-decoder attention层, 以及Feed Forward层. 但是在GPT中取消了第二个encoder-decoder attention子层, 只保留Masked Multi-Head Attention层, 和Feed Forward层.

  • 作为单向Transformer Decoder模型, GPT利用句子序列信息预测下一个单词的时候, 要使用Masked Multi-Head Attention对单词的下文进行遮掩, 来防止未来信息的提前泄露. 例如给定一个句子包含4个单词[A, B, C, D], GPT需要用[A]预测B, 用[A, B]预测C, 用[A, B, C]预测D. 很显然的就是当要预测B时, 需要将[B, C, D]遮掩起来.

  • 具体的遮掩操作是在slef-attention进行softmax之前进行的, 一般的实现是将MASK的位置用一个无穷小的数值-inf来替换, 替换后执行softmax计算得到新的结果矩阵. 这样-inf的位置就变成了0. 如上图所示, 最后的矩阵可以很方便的做到当利用A预测B的时候, 只能看到A的信息; 当利用[A, B]预测C的时候, 只能看到A, B的信息.

  • 注意: 对比于经典的Transformer架构, 解码器模块采用了6个Decoder Block; GPT的架构中采用了12个Decoder Block.

3 GPT训练过程

GPT的训练也是典型的两阶段过程:

  • 第一阶段: 无监督的预训练语言模型.
  • 第二阶段: 有监督的下游任务fine-tunning.

3.1 无监督的预训练语言模型

3.2 有监督的下游任务fine-tunning

4 小结

  • 什么是GPT.

    • GPT是OpenAI公司提出的一种预训练语言模型.
    • 本质上来说, GPT是一个单向语言模型.
  • GPT的架构.

    • GPT采用了Transformer架构中的解码器模块.
    • GPT在使用解码器模块时做了一定的改造, 将传统的3层Decoder Block变成了2层Block, 删除了encoder-decoder attention子层, 只保留Masked Multi-Head Attention子层和Feed Forward子层.
    • GPT的解码器总共是由12个改造后的Decoder Block组成的.
  • GPT的预训练任务.

    • 第一阶段: 无监督的预训练语言模型. 只利用单词前面的信息来预测当前单词.
    • 第二阶段: 有监督的下游任务fine-tunning.
相关推荐
sunshine88514 小时前
合规性管理:财务安全与业务连续性的双重保障
大数据·运维·人工智能
lusasky14 小时前
Claude Code v2.1.0+ 版本集成LSP
大数据·数据库·人工智能
yusur14 小时前
中科驭数CEO鄢贵海:AI尚处“Day 1”,算力基建的价值外溢如同高铁
人工智能·科技·dpu·中科驭数
小鸡吃米…14 小时前
机器学习 —— 数据缩放
人工智能·python·机器学习
2501_9413370614 小时前
YOLO11-C3k2-RAB改进模型在航拍军事目标检测中的应用与实现
人工智能·目标检测·目标跟踪
qwy71522925816314 小时前
9-数字水印的嵌入和提取
人工智能·opencv·计算机视觉
【赫兹威客】浩哥14 小时前
可食用野生植物数据集构建与多版本YOLO模型训练实践
开发语言·人工智能·python
小马爱打代码14 小时前
Spring AI 实战:Agent 基础搭建与核心能力解析
java·人工智能·spring
Aaron158814 小时前
通信灵敏度计算与雷达灵敏度计算对比分析
网络·人工智能·深度学习·算法·fpga开发·信息与通信·信号处理
AgeClub14 小时前
数智银发,生态共赢:2026银发智能科技与产品渠道生态对接会在上海市养老科技产业园成功举办
人工智能