transformer理解

李宏毅老师讲解的Transformer,非常简单易懂:https://www.youtube.com/watch?

RNN存在的问题是,只有得到t(i)时刻的向量信息才能够计算t(i+1)时刻的向量信息,无法实现并行化。无法实现长序列的特征信息提取,超过一篇文章的训练,train不起来。

self-attention首先利用自身embedding q,所有embedding k乘积得到的是自身embedding与其他embedding 之间的一个对应权重关系,除以根号d是为了解决维度越长特征信息数值越大的问题。对上述得到的对应权重信息进行soft-max,相当于对权重信息进行归一化处理,有利于后面与特征信息乘积的计算。

然后利用所有的对应权重关系与各自的value值相乘再相加,相当于自身embedding 与其他embedding 特征信息进行信息整合,整合后的结果作为当前embedding特征信息进行输出。

multi-head self-attention 相当于增加了多个需要训练的权重信息,相当于多层卷积核同时进行训练,增加训练过程中的特征信息的维度。不同的head关注的特征信息可能不同。

加入位置编码信息:

因为没有位置信息,所以加入 positional encoding

Feed forward理解:

Feed forward 在作的事情有点像SENET 先进行特征维度的延展,然后进行非线性变换,再进行特征信息的压缩,从而实现注意力的增强,实现一个非线性化。

BN与LN的区别:

BatchNorm是对一个batch-size样本内的每个特征做归一化,LayerNorm是对每个样本的所有特征做归一化。

BN抹杀了不同特征之间的大小关系,但是保留了不同样本间的大小关系;LN抹杀了不同样本间的大小关系,但是保留了一个样本内不同特征之间的大小关系。

在图像处理中对图像的信息中的亮度、颜色进行BN处理,有利于模型模型训练

在文本处理中对单条文本信息进行语义上的LN处理,有利于模型模型训练

相关推荐
rayufo3 分钟前
包含思维链CoT的最小大模型
人工智能·chatgpt
麦麦大数据5 分钟前
M003_中药可视化系统开发实践:知识图谱与AI智能问答的完美结合
人工智能·flask·llm·vue3·知识图谱·neo4j·ner
生成论实验室32 分钟前
即事经:一种基于生成论的宇宙、生命与文明新范式
人工智能·科技·神经网络·算法·信息与通信
量子-Alex1 小时前
【大模型思维链】RAP中如何通过提示词将LLM改造为世界模型
人工智能·深度学习·机器学习
码农杂谈00071 小时前
企业人工智能:2026 避坑指南,告别工具摆设,实现 AI 价值变现
人工智能·百度
tuotali20261 小时前
氢气压缩机技术核心要点测评
大数据·人工智能
上进小菜猪1 小时前
基于 YOLOv8 的石头剪刀布手势识别系统工程实践 [目标检测完整源码]
深度学习
硅谷秋水2 小时前
多智体机器人系统(MARS)挑战的进展与创新
深度学习·机器学习·计算机视觉·语言模型·机器人·人机交互
systeminof2 小时前
从类比到迁移:研究解析大脑“举一反三”的神经基础
人工智能
波动几何2 小时前
价格运动三大定律:从市场混沌到几何必然性
人工智能