transformer理解

李宏毅老师讲解的Transformer,非常简单易懂:https://www.youtube.com/watch?

RNN存在的问题是,只有得到t(i)时刻的向量信息才能够计算t(i+1)时刻的向量信息,无法实现并行化。无法实现长序列的特征信息提取,超过一篇文章的训练,train不起来。

self-attention首先利用自身embedding q,所有embedding k乘积得到的是自身embedding与其他embedding 之间的一个对应权重关系,除以根号d是为了解决维度越长特征信息数值越大的问题。对上述得到的对应权重信息进行soft-max,相当于对权重信息进行归一化处理,有利于后面与特征信息乘积的计算。

然后利用所有的对应权重关系与各自的value值相乘再相加,相当于自身embedding 与其他embedding 特征信息进行信息整合,整合后的结果作为当前embedding特征信息进行输出。

multi-head self-attention 相当于增加了多个需要训练的权重信息,相当于多层卷积核同时进行训练,增加训练过程中的特征信息的维度。不同的head关注的特征信息可能不同。

加入位置编码信息:

因为没有位置信息,所以加入 positional encoding

Feed forward理解:

Feed forward 在作的事情有点像SENET 先进行特征维度的延展,然后进行非线性变换,再进行特征信息的压缩,从而实现注意力的增强,实现一个非线性化。

BN与LN的区别:

BatchNorm是对一个batch-size样本内的每个特征做归一化,LayerNorm是对每个样本的所有特征做归一化。

BN抹杀了不同特征之间的大小关系,但是保留了不同样本间的大小关系;LN抹杀了不同样本间的大小关系,但是保留了一个样本内不同特征之间的大小关系。

在图像处理中对图像的信息中的亮度、颜色进行BN处理,有利于模型模型训练

在文本处理中对单条文本信息进行语义上的LN处理,有利于模型模型训练

相关推荐
得贤招聘官1 分钟前
AI赋能HR进化:构建招聘效率、精准与体验三重闭环
人工智能
麦麦大数据1 分钟前
F056 知识图谱飞机问答系统
人工智能·flask·vue·问答系统·知识图谱·neo4j·飞机
神算大模型APi--天枢6461 分钟前
国产大模型后端开发与部署实战:从算力架构到行业规模化落地
大数据·运维·服务器·人工智能·架构
汽车仪器仪表相关领域5 分钟前
ZRT-III 机器人减速器出厂检测平台
人工智能·功能测试·安全·机器人·压力测试·可用性测试
弓.长.5 分钟前
智能体(Agent)架构设计模式:基于实际项目的模块拆解
人工智能
ctrigger7 分钟前
高级《高级统计实务》考试大纲
大数据·人工智能
沫儿笙8 分钟前
Kasawaki川崎焊接机器人弧焊气体节约设备
人工智能·机器人
中年程序员一枚14 分钟前
cv.drawChessboardCorners 是 OpenCV 中用于可视化棋盘格角点检测
人工智能·opencv·计算机视觉
星环科技19 分钟前
什么是 LLMOps?一文解析大语言模型运维(LLMOps)
人工智能·深度学习
电商API_1800790524720 分钟前
进阶篇:电商商品评论情感分析 + 关键词挖掘(Python NLP 实战)
大数据·开发语言·网络·数据库·人工智能