transformer理解

李宏毅老师讲解的Transformer,非常简单易懂:https://www.youtube.com/watch?

RNN存在的问题是,只有得到t(i)时刻的向量信息才能够计算t(i+1)时刻的向量信息,无法实现并行化。无法实现长序列的特征信息提取,超过一篇文章的训练,train不起来。

self-attention首先利用自身embedding q,所有embedding k乘积得到的是自身embedding与其他embedding 之间的一个对应权重关系,除以根号d是为了解决维度越长特征信息数值越大的问题。对上述得到的对应权重信息进行soft-max,相当于对权重信息进行归一化处理,有利于后面与特征信息乘积的计算。

然后利用所有的对应权重关系与各自的value值相乘再相加,相当于自身embedding 与其他embedding 特征信息进行信息整合,整合后的结果作为当前embedding特征信息进行输出。

multi-head self-attention 相当于增加了多个需要训练的权重信息,相当于多层卷积核同时进行训练,增加训练过程中的特征信息的维度。不同的head关注的特征信息可能不同。

加入位置编码信息:

因为没有位置信息,所以加入 positional encoding

Feed forward理解:

Feed forward 在作的事情有点像SENET 先进行特征维度的延展,然后进行非线性变换,再进行特征信息的压缩,从而实现注意力的增强,实现一个非线性化。

BN与LN的区别:

BatchNorm是对一个batch-size样本内的每个特征做归一化,LayerNorm是对每个样本的所有特征做归一化。

BN抹杀了不同特征之间的大小关系,但是保留了不同样本间的大小关系;LN抹杀了不同样本间的大小关系,但是保留了一个样本内不同特征之间的大小关系。

在图像处理中对图像的信息中的亮度、颜色进行BN处理,有利于模型模型训练

在文本处理中对单条文本信息进行语义上的LN处理,有利于模型模型训练

相关推荐
8K超高清1 分钟前
超高清科技引爆中国电影向“新”力
大数据·运维·服务器·网络·人工智能·科技
申耀的科技观察4 分钟前
【观察】为AI就绪筑基,为产业智能引路,联想凌拓铺就AI规模化落地通途
人工智能·百度
y***03177 分钟前
深入了解Text2SQL开源项目(Chat2DB、SQL Chat 、Wren AI 、Vanna)
人工智能·sql·开源
Deepoch8 分钟前
Deepoc-M落地:给仪器设计装上“智能引擎”
人工智能·具身模型
老欧学视觉13 分钟前
0010集成学习(Ensemble Learning)
人工智能·机器学习·集成学习
lqqjuly21 分钟前
《AI Agent智能体与MCP开发实战》之构建个性化的arXiv科研论文MCP服务实战
人工智能·深度学习
羊仔AI探索21 分钟前
GLM-4.6接入Claude Code插件,国内丝滑编程
ide·人工智能·ai·aigc·ai编程
Bdygsl23 分钟前
数字图像处理总结 Day 1
人工智能·算法·计算机视觉
墨染星辰云水间23 分钟前
机器学习(一)
人工智能·机器学习
张彦峰ZYF25 分钟前
Coze文章仿写:智能体 + 工作流实现内容自动生成与插图输出
人工智能·ai·coze dify