transformer理解

李宏毅老师讲解的Transformer,非常简单易懂:https://www.youtube.com/watch?

RNN存在的问题是,只有得到t(i)时刻的向量信息才能够计算t(i+1)时刻的向量信息,无法实现并行化。无法实现长序列的特征信息提取,超过一篇文章的训练,train不起来。

self-attention首先利用自身embedding q,所有embedding k乘积得到的是自身embedding与其他embedding 之间的一个对应权重关系,除以根号d是为了解决维度越长特征信息数值越大的问题。对上述得到的对应权重信息进行soft-max,相当于对权重信息进行归一化处理,有利于后面与特征信息乘积的计算。

然后利用所有的对应权重关系与各自的value值相乘再相加,相当于自身embedding 与其他embedding 特征信息进行信息整合,整合后的结果作为当前embedding特征信息进行输出。

multi-head self-attention 相当于增加了多个需要训练的权重信息,相当于多层卷积核同时进行训练,增加训练过程中的特征信息的维度。不同的head关注的特征信息可能不同。

加入位置编码信息:

因为没有位置信息,所以加入 positional encoding

Feed forward理解:

Feed forward 在作的事情有点像SENET 先进行特征维度的延展,然后进行非线性变换,再进行特征信息的压缩,从而实现注意力的增强,实现一个非线性化。

BN与LN的区别:

BatchNorm是对一个batch-size样本内的每个特征做归一化,LayerNorm是对每个样本的所有特征做归一化。

BN抹杀了不同特征之间的大小关系,但是保留了不同样本间的大小关系;LN抹杀了不同样本间的大小关系,但是保留了一个样本内不同特征之间的大小关系。

在图像处理中对图像的信息中的亮度、颜色进行BN处理,有利于模型模型训练

在文本处理中对单条文本信息进行语义上的LN处理,有利于模型模型训练

相关推荐
ECT-OS-JiuHuaShan3 分钟前
麻烦是第一推动力,不厌其烦就是负熵流
开发语言·人工智能·数学建模·学习方法·量子计算
skywalk81636 分钟前
关于创建中文编程语言及自然语言转MoonBit的整合分析报告
大数据·人工智能
TMT星球12 分钟前
欧瑞博推出全新集成方案,用谷电做空调,一晚只需一度电
人工智能·语音识别
阿标在干嘛20 分钟前
使用科力辰app与依赖传统渠道获取科技业务信息的效率差
大数据·人工智能·科技
newsxun22 分钟前
首都现代物流骨干网络体系正式启动
大数据·人工智能
摸鱼仙人~31 分钟前
简单的GAN生成学习案例
人工智能·学习·生成对抗网络
Akamai中国39 分钟前
预先构建的CNCF流水线:从Git到在Kubernetes上运行
人工智能·云计算·云服务·云存储
DevSecOps选型指南41 分钟前
大模型应用安全挑战应对之道:悬镜问境 AIST 解决方案实践路径
人工智能·安全
海边夕阳20061 小时前
【每天一个AI小知识】:什么是图神经网络?
人工智能·经验分享·深度学习·神经网络·机器学习