transformer理解

李宏毅老师讲解的Transformer,非常简单易懂:https://www.youtube.com/watch?

RNN存在的问题是,只有得到t(i)时刻的向量信息才能够计算t(i+1)时刻的向量信息,无法实现并行化。无法实现长序列的特征信息提取,超过一篇文章的训练,train不起来。

self-attention首先利用自身embedding q,所有embedding k乘积得到的是自身embedding与其他embedding 之间的一个对应权重关系,除以根号d是为了解决维度越长特征信息数值越大的问题。对上述得到的对应权重信息进行soft-max,相当于对权重信息进行归一化处理,有利于后面与特征信息乘积的计算。

然后利用所有的对应权重关系与各自的value值相乘再相加,相当于自身embedding 与其他embedding 特征信息进行信息整合,整合后的结果作为当前embedding特征信息进行输出。

multi-head self-attention 相当于增加了多个需要训练的权重信息,相当于多层卷积核同时进行训练,增加训练过程中的特征信息的维度。不同的head关注的特征信息可能不同。

加入位置编码信息:

因为没有位置信息,所以加入 positional encoding

Feed forward理解:

Feed forward 在作的事情有点像SENET 先进行特征维度的延展,然后进行非线性变换,再进行特征信息的压缩,从而实现注意力的增强,实现一个非线性化。

BN与LN的区别:

BatchNorm是对一个batch-size样本内的每个特征做归一化,LayerNorm是对每个样本的所有特征做归一化。

BN抹杀了不同特征之间的大小关系,但是保留了不同样本间的大小关系;LN抹杀了不同样本间的大小关系,但是保留了一个样本内不同特征之间的大小关系。

在图像处理中对图像的信息中的亮度、颜色进行BN处理,有利于模型模型训练

在文本处理中对单条文本信息进行语义上的LN处理,有利于模型模型训练

相关推荐
Godspeed Zhao3 分钟前
现代智能汽车中的无线技术106——ETC(0)
网络·人工智能·汽车
恋猫de小郭7 分钟前
AGENTS.md 真的对 AI Coding 有用吗?或许在此之前你没用对?
前端·人工智能·ai编程
久邦科技13 分钟前
OpenCode 完整入门(安装 + 配置 + 使用 + 模板)
人工智能
zhangshuang-peta39 分钟前
模型上下文协议(MCP):演进历程、功能特性与Peta的崛起
人工智能·ai agent·mcp·peta
heimeiyingwang44 分钟前
企业供应链 AI 优化:需求预测与智能调度
大数据·数据库·人工智能·机器学习
bst@微胖子2 小时前
PyTorch深度学习框架之基础实战二
人工智能·深度学习
盟接之桥2 小时前
盟接之桥EDI软件:API数据采集模块深度解析,打造企业数据协同新引擎
java·运维·服务器·网络·数据库·人工智能·制造
大好人ooo2 小时前
RAG & Grounding
人工智能
无忧智库2 小时前
某电力公司“十五五”源网荷储多Agent协调控制与虚拟电厂平台建设方案深度解析(WORD)
人工智能