机器学习(23)---Boosting tree(课堂笔记)

文章目录

  • 一、知识记录
  • 二、题目
    • [2.1 题目1](#2.1 题目1)
    • [2.2 题目2](#2.2 题目2)
    • [2.3 题目三](#2.3 题目三)
    • [2.4 答案书写](#2.4 答案书写)

一、知识记录

二、题目

2.1 题目1

2.2 题目2

2.3 题目三

T 4 T_4 T4中 0.15 0.15 0.15 改为 − 0.16 -0.16 −0.16, − 0.22 -0.22 −0.22 改为 0.11 0.11 0.11。

2.4 答案书写


相关推荐
歪歪1007 天前
Vue原理与高级开发技巧详解
开发语言·前端·javascript·vue.js·前端框架·集成学习
赴33512 天前
机器学习 集成学习之随机森林
人工智能·python·随机森林·机器学习·集成学习·sklearn·垃圾邮件判断
roman_日积跬步-终至千里14 天前
【机器学习】(算法优化一)集成学习之:装袋算法(Bagging):装袋决策树、随机森林、极端随机树
算法·机器学习·集成学习
Yn31216 天前
StackingClassifier参数详解与示例
集成学习
旧时光巷20 天前
【机器学习-4】 | 集成学习 / 随机森林篇
python·随机森林·机器学习·集成学习·sklearn·boosting·bagging
nju_spy1 个月前
周志华《机器学习导论》第8章 集成学习 Ensemble Learning
人工智能·随机森林·机器学习·集成学习·boosting·bagging·南京大学
军军君011 个月前
基于Springboot+UniApp+Ai实现模拟面试小工具二:后端项目搭建
前端·javascript·spring boot·spring·微信小程序·前端框架·集成学习
Wilber的技术分享1 个月前
【机器学习实战笔记 14】集成学习:XGBoost算法(一) 原理简介与快速应用
人工智能·笔记·算法·随机森林·机器学习·集成学习·xgboost
.30-06Springfield1 个月前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
阿水实证通1 个月前
Stata如何做机器学习?——SHAP解释框架下的足球运动员价值驱动因素识别:基于H2O集成学习模型
人工智能·机器学习·集成学习