集成学习

minhuan3 天前
人工智能·机器学习·adaboost·集成学习·bagging
构建AI智能体:六十八、集成学习:从三个臭皮匠到AI集体智慧的深度解析我们通常说“三个臭皮匠,顶个诸葛亮”,集成学习就是利用这个思想。在机器学习中,我们训练多个模型,这些模型可以是同一种类的,也可以是不同种类的,然后通过某种方式将它们组合起来,共同完成一个任务,从而获得比单个模型更好的性能。
Y200309166 天前
人工智能·cnn·集成学习
基于 CIFAR10 数据集的卷积神经网络(CNN)模型训练与集成学习导入torch、torch.nn、torch.optim等 PyTorch 核心模块,以及numpy、torchvision等工具库,用于模型构建、优化、数据处理;同时定义超参数(如批次大小BATCHSIZE=100、训练轮数EPOCHES=20、学习率LR=0.001等)。
程序员大雄学编程7 天前
笔记·机器学习·集成学习
「机器学习笔记14」集成学习全面解析:从Bagging到Boosting的Python实战指南三个臭皮匠,顶个诸葛亮。在机器学习领域,集成学习正是这一智慧的最佳体现。集成学习(Ensemble Learning)是一种通过构建并结合多个学习器来完成学习任务的机器学习方法。其核心思想是:将多个弱学习器组合起来,形成一个强学习器,从而获得比单一学习器更优越的性能。
rengang6613 天前
人工智能·算法·随机森林·机器学习·集成学习
09-随机森林:介绍集成学习中通过多决策树提升性能的算法随机森林(Random Forest)是一种在机器学习领域中广泛应用的集成学习算法,通过结合多个决策树的预测结果来提升整体模型的性能。集成学习的核心思想在于"集体智慧",即通过多个模型的协同作用,弥补单一模型的不足,从而获得更稳定、更准确的预测结果。
小杨互联网1 个月前
机器学习·集成学习·boosting
集成学习全解析:Bagging、Boosting、Stacking原理与实战(2025版)本文详细讲解三种主流集成学习方法的工作原理、适用场景及Python实战,附完整代码示例在机器学习实践中,单个模型往往难以达到最佳性能。集成学习通过组合多个模型,可以有效提升预测准确性和稳定性。本文将深入解析Bagging、Boosting和Stacking三种核心集成方法,并提供实际的Python代码示例。
九章云极AladdinEdu1 个月前
人工智能·随机森林·机器学习·强化学习·集成学习·boosting·ai研究
集成学习智慧:为什么Bagging(随机森林)和Boosting(XGBoost)效果那么好?在机器学习的世界里,有一个令人着迷的现象:通过组合多个相对简单的模型,往往能够获得比单个复杂模型更好的性能。这就是集成学习(Ensemble Learning)的核心思想——“三个臭皮匠,顶个诸葛亮”。
AI小白的Python之路1 个月前
人工智能·机器学习·集成学习
机器学习-集成学习集成学习是机器学习中的一种思想,它通过多个模型的组合形成一个精度更高的模型,参与组合的模型成为弱学习器(弱学习器)。训练时,使用训练集依次训练出这些弱学习器,对未知的样本进行预测时,使用这些弱学习器联合进行预测。
在猴站学算法1 个月前
人工智能·机器学习·集成学习
机器学习(西瓜书)第八章 集成学习作者前言:本章内容是作者阅读《机器学习》(周志华)(网友戏称“西瓜书”,因为本书作者从第一章开始便通过如何辨别好的西瓜的例子来剖析机器学习的实质以及书的封面是西瓜)及相关资料写的。笔者在写此博客前,也看到了网上发布了大量相关此书的读书笔记,但翻来看去发现存在公式放的较多、大量拍摄书上的内容照片直接贴图等情况,不太适合新手阅读。故,作者写下此篇博客。笔者尽可能简化公式或者不放公式,读者在阅读。过程中不要过于纠结看懂里面的数学公式,只需搞懂里面各种的作用,内在大致的缘由即可。
君名余曰正则1 个月前
人工智能·机器学习·集成学习
机器学习08——集成学习(Boosting、Bagging、结合策略)上一章:机器学习07——贝叶斯分类器 下一章:机器学习09——聚类 机器学习实战项目:【从 0 到 1 落地】机器学习实操项目目录:覆盖入门到进阶,大学生就业 / 竞赛必备
空白到白1 个月前
人工智能·机器学习·集成学习
机器学习-集成学习1.1 基本定义 集成学习(Ensemble Learning)通过组合多个弱学习器(Weak Learner)构建强学习器,其泛化误差可表示为:
水凌风里1 个月前
人工智能·机器学习·集成学习
4.4 机器学习 - 集成学习集成学习通过 “组合多个基础模型” 提升泛化能力,核心分为并行集成(Bagging)、串行集成(Boosting) 和多层集成(Stacking) 三大范式,分别对应 “降方差”“降偏差”“兼顾偏差与方差” 三大优化目标,适用场景与实现逻辑差异显著。
雲_kumo1 个月前
人工智能·机器学习·集成学习
集成学习:从理论到实践的全面解析摘要:本文深入浅出地讲解集成学习(Ensemble Learning)的核心思想、主流算法及其实际应用。我们将从 Bagging 与 Boosting 的基本概念出发,重点剖析随机森林、AdaBoost、GBDT 和 XGBoost 的原理与实现,并通过多个真实案例展示其强大性能。无论你是机器学习初学者,还是希望系统梳理集成学习知识的开发者,本文都将为你提供一份清晰、实用的指南。
DreamNotOver2 个月前
python·scikit-learn·集成学习
基于Scikit-learn集成学习模型的情感分析研究与实现摘要:情感分析是自然语言处理领域的核心任务之一,旨在自动识别文本中所表达的情感倾向。本文探讨了基于机器学习的情感分析方法,重点研究了逻辑回归(LR)、支持向量机(SVM)和随机森林(Random Forest)三种模型在情感分析任务上的应用。研究使用Python的Scikit-learn库构建分类器,并详细阐述了各模型的原理、参数配置及其在情感分析中的优势。通过集成多种模型,本研究旨在构建一个高效、鲁棒的情感分析系统,为产品评论、社交媒体监控等应用场景提供有效的技术解决方案。
pan0c232 个月前
人工智能·机器学习·集成学习
集成学习(随机森林算法、Adaboost算法)目录一、集成学习思想1、bagging集成思想2、boosting集成思想3、Bagging&Boosting对比
pan0c232 个月前
人工智能·机器学习·集成学习
集成学习 —— 梯度提升树GBDT、XGBoost目录一、梯度提升树1、残差提升树 Boosting Decision Tree2、梯度提升树 Gradient Boosting Decision Tree
l12345sy2 个月前
算法·机器学习·集成学习·bagging·随机森林算法
Day22_【机器学习—集成学习(2)—Bagging—随机森林算法】随机森林算法是基于 Bagging 思想实现的一种集成学习算法(代表算法 ),采用决策树模型作为每一个弱学习器。
l12345sy2 个月前
机器学习·集成学习·boosting·残差·gbdt算法·负梯度
Day22_【机器学习—集成学习(4)—Boosting—GBDT算法】提升树 (Boosting Decision Tree )每一个弱学习器通过拟合残差来构建强学习器梯度提升树 (Gradient Boosting Decision Tree)
DatGuy2 个月前
人工智能·深度学习·集成学习
Week 15: 深度学习补遗:集成学习初步本周主要继续跟随了李宏毅老师学习了集成学习有关的知识,围绕集成学习的思想、Bagging和Boosting重新组织数据集的基本思想等进行了基本的了解。
源于花海2 个月前
论文阅读·迁移学习·集成学习·电池管理
Energy期刊论文学习——基于集成学习模型的多源域迁移学习方法用于小样本实车数据锂离子电池SOC估计Hi,大家好,我是半亩花海。现对领域内一篇SCI一区TOP期刊论文进行阅读,文献记录如下。本文提出一种基于集成学习的多源域迁移学习方法,用于解决小样本实车数据下锂电池SOC估计难题。研究构建包含锂三元、磷酸铁锂电池和实车数据的多源域集,针对不同源域设计差异化预训练模型(BiLSTM适配实验室数据,CNN-LSTM适配实车数据),并创新性地采用LSBoost动态权重融合策略。实验表明,该方法在目标域SOC估计中取得显著效果(MAE=0.187%,RMSE=0.245%),有效克服了传统单源迁移的负迁移问题。
THMAIL2 个月前
人工智能·python·算法·随机森林·机器学习·集成学习·sklearn
机器学习从入门到精通 - 集成学习核武器:随机森林与XGBoost工业级应用记得我第一次接触集成学习,盯着那一堆决策树发懵 —— 这玩意儿怎么就能比单个模型强那么多?直到在真实业务数据上栽了跟头才明白,模型的世界里孤胆英雄往往走不远。今天咱们就掰开揉碎了聊聊集成学习里的两员悍将:随机森林和XGBoost。我敢拍胸脯说,这俩家伙在工业界的地位,堪比车间里的万能扳手。这篇长文会带你从原理到代码,从调参到避坑,彻底搞懂它们怎么把预测精度拉满。对了,还有个细节 —— 我会把那些深夜debug才发现的坑点全抖出来,省得你重蹈覆辙。