ReVersion|图像生成中的Relation定制化

新任务:Relation Inversion

新任务:Relation Inversion

今年,diffusion model和相关的定制化(personalization)的工作越来越受人们欢迎,例如DreamBooth,Textual Inversion,Custom Diffusion等,该类方法可以将一个具体物体的概念从图片中提取出来,并加入到预训练的text-to-image diffusion model中,这样一来,人们就可以定制化地生成自己感兴趣的物体,比如说具体的动漫人物,或者是家里的雕塑,水杯等等。

现有的定制化方法主要集中在捕捉物体外观 (appearance) 方面。然而,除了物体的 外观 ,视觉世界还有另一个重要的支柱,就是物体与物体之间千丝万缕的**关系( **relation ** **。目前还没有工作探索过如何从图片中提取一个具体关系(relation),并将该relation作用在生成任务上。为此,我们提出了一个新任务:Relation Inversion

如上图,给定几张参考图片,这些参考图片中有一个共存的relation,例如"物体A被装在 物体B中",Relation Inversion的目标是找到一个relation prompt 来描述这种交互关系,并将其应用于生成新的场景,让其中的物体也按照这个relation互动,例如将蜘蛛侠装进篮子里。

ReVersion框架

作为针对Relation Inversion问题的首次尝试,我们提出了ReVersion框架:

相较于已有的Appearance Invesion任务,Relation Inversion任务的难点在于怎样告诉模型我们需要提取的是relation这个相对抽象的概念,而不是物体的外观这类有显著视觉特征的方面。

我们提出了relation-focal importance sampling策略来鼓励更多地关注high-level的relation;同时设计了relation-steering contrastive learning来引导更多地关注relation,而非物体的外观。更多细节详见论文。

ReVersion Benchmark

我们收集并提供了ReVersion Benchmark: github.com/ziqihuangg/...

它包含丰富多样的relation,每个relation有多张exemplar images以及人工标注的文字描述。我们同时对常见的relation提供了大量的inference templates,大家可以用这些inference templates来测试学到的relation prompt是否精准,也可以用来组合生成一些有意思的交互场景。

结果展示

丰富多样的relation

我们可以invert丰富多样的relation,并将它们作用在新的物体上

丰富多样的背景以及风格

我们得到的relation ,还可以将不同风格背景场景中的物体,按照特定的方式联系在一起。

同一个Relation,丰富多样的物体组合

相关推荐
前端阿森纳4 天前
AI产品经理的核心竞争力:在技术、用户与商业的交叉点上创造价值
产品经理·产品·资讯
前端阿森纳4 天前
七大产品设计方法论:构建卓越软件产品的思维工具箱
产品经理·产品·资讯
隐语SecretFlow4 天前
如何在 Kuscia 中使用自定义镜像仓库
开源·资讯
算家计算6 天前
解禁H200却留有后手!美国这波“卖芯片”,是让步还是埋坑?
人工智能·资讯
隐语SecretFlow6 天前
如何在 Kuscia 中升级引擎镜像?
开源·资讯
NocoBase10 天前
GitHub Star 数量前 5 的开源 AI 内部工具
低代码·开源·资讯
隐语SecretFlow12 天前
Kusica如何多机部署中心化进群【隐语Secretflow】
开源·资讯
隐语SecretFlow12 天前
【隐语Secretflow】如何在Docker多机部署Kuscia点对点集群
开源·资讯