分布式ID系统设计(1)

分布式ID系统设计(1)

复制代码
在分布式服务中,需要对data和message进行唯一标识。
比如订单、支付等。然后在数据库分库分表之后也需要一个唯一id来表示。
基于DB的自增就肯定不能满足了。这个时候能够生成一个Global的唯一ID的服务就很有必要

我们姑且把它叫做id-server 。那么这么个id-server的设计和考虑需要什么

  1. 全局唯一:不能出现重复的id号 最基本要求。
  2. 趋势递增: 在innodb中使用的是聚集索引。B+Tree的pk最好是有序的
  3. 单调递增:保证下一个id一定要大于上一个id
  4. 安全:如果ID是连续的 被爬虫的可能性能就很大。有一些场景下会需要id的无序

上述 1 2 3对应三类场景。而且3和4是互斥的,不能使用同一个方案满足。

出了上述的对于id号码的要求。架构层还需要id-server可用性非常高。如果id-server瘫痪整个业务系统都是不可用的。基本就是业务瘫痪。

由上述的 总结出一个id-server 需要满足:

  1. 平均延迟和TP999延迟都要尽可能低;
  2. 高可用尽量满足99999
  3. QPS一定要高

常见方法介绍

UUID

uuid 标准包含32个16进制数字,以连字号为5段,形式8-4-4-4-12的36个字符。

Java下的UUID

· 优点:性能非常高 本地生成。没有任何网络消耗

. 缺点:

1.不容易存储。uuid太长 16字节128位 36长度字符串。很多场景不适用

2.信息不安全。毕竟里面包了mac地址 造成mac泄漏

3 id作pk的时候在某些场景下会有性能问题。比如MySQL-DB pk.无序的pk会导致数据位置频繁变动。严重影响性能。

类snowFlake方案

snowFlake 组成:

0(首位不用)-xxxxx(41位时间戳)-workerID(10位)-xxxx(12位序列号)

41位的时间可以表示(1L<<41) 大概是68年的时间 10位机器码可以表示1024机器。如果对idc划分有需求 可以划分一部分bit给idc 剩下的给workid。12个自增可以表示2的12次个ID。总的QPS应该能达到几百万

  • 优点:
    1. 毫秒数在高位 自增序列在低位。整个id都是趋势递增
    2. 不依赖数据库 以服务的方式部署 稳定性更高。生成ID的性能也高
    3. 可以根据自身业务特性分配bit位。较为灵活
  • 缺点:
    1. 强依赖机器时钟,如果机器上时钟回拨,会导致id重复或者服务不可用
相关推荐
武子康4 分钟前
Java-200 RabbitMQ 架构与 Exchange 路由:fanout/direct/topic/headers
java·架构·消息队列·系统架构·rabbitmq·java-rabbitmq·mq
计算机学姐6 分钟前
基于SSM的社区外来务工人员管理系统【2026最新】
java·vue.js·java-ee·tomcat·maven·intellij-idea·mybatis
好学且牛逼的马7 分钟前
HttpServlet 深度拆解:从设计模式看透其核心原理
java·servlet·设计模式
顾安r8 分钟前
12.17 脚本网页 创意导航
java·linux·前端·游戏·html
Json____8 分钟前
springboot框架对接物联网,配置TCP协议依赖,与设备通信,让TCP变的如此简单
java·spring boot·后端·tcp/ip
洛阳泰山9 分钟前
快速上手 MaxKB4J:开源企业级智能知识库系统在 Sealos 上的完整部署指南
java·开源·llm·agent·rag
risc1234569 分钟前
【Elasticsearch】副本恢复机制文件级(file-based)操作级(ops-based)顶级理解
java·mysql·lucene
后端小张10 分钟前
【JAVA 进阶】深入拆解SpringBoot自动配置:从原理到实战的完整指南
java·开发语言·spring boot·后端·spring·spring cloud·springboot
Yeniden10 分钟前
Deepeek用大白话讲解 → 解释器模式(企业级场景1,规则引擎2,表达式解析3,SQL解析4)
java·sql·解释器模式
一起养小猫16 分钟前
《Java数据结构与算法》第四篇(二)二叉树的性质、定义与链式存储实现
java·数据结构·算法