GLIP,FLIP论文阅读

Scaling Language-Image Pre-training via Masking(FLIP,2023)👍

贡献:

1.图像端引入MAE的随机MASK,image encoder只处理未mask的patches(和之前的MAE方法一致),减少了输入序列长度加速训练,减少memory开销。

text端没引入mask是因为text信息比较dense(图片信息比较稀疏),mask掉效果反而不好,之后是选择mask掉text

padding的地方提升了精度。

2.做了三个方面的scale:说明model和data的scale还是很重要的,不同数据集相同大小也会对模型造成影响

  • model scaling:vit变大,效果很直观的好
  • data scaling:将预训练数据集从LAION-400M扩展到更大的数据集LAION-2B(固定训练过程采样的样本总量)
  • schedule scaling :增加训练过程的采样数据量(从12.8B->25.6B,即训练epochs从32增加至64


下图绿色划线:增大VIT有利于transfer learning,增加数据量有利于做zero shot

模型

Ablation study

(a)我觉得可能提升的一个因素是bz大了,负样本也多了,效果好,作者不做相同bz的实验

(d)说明了减少mask率微调几个epoch有有助于提升精度


GLIP:Grounded Language-Image Pre-training(2022)👍

模型:

Language-Aware Deep Fusion:

1.image encoder 和 text encoder 抽取图像和文本的特征

2.对抽取的特征进行cross attention ,获得更好的交互后的特征:

X-MHA:cross-modality multi-head attention module,类似cross attention ,qk算attn,各自的v分别算一次

上图(B)是在(A)的基础上添加了deep fusion,涨点还是很明显的,增加数据量涨点也很明显

相关推荐
0x21113 小时前
[论文阅读]Tensor Trust: Interpretable Prompt Injection Attacks from an Online Game
论文阅读·prompt
s1ckrain2 天前
【论文阅读】VARGPT-v1.1
论文阅读·多模态大模型·统一生成模型
Catching Star2 天前
【论文笔记】【强化微调】Vision-R1:首个针对多模态 LLM 制定的强化微调方法,以 7B 比肩 70B
论文阅读·强化微调
王上上2 天前
【论文阅读41】-LSTM-PINN预测人口
论文阅读·人工智能·lstm
s1ckrain2 天前
【论文阅读】DeepEyes: Incentivizing “Thinking with Images” via Reinforcement Learning
论文阅读·强化学习·多模态大模型·vlm
张较瘦_3 天前
[论文阅读] 人工智能 + 软件工程 | 需求获取访谈中LLM生成跟进问题研究:来龙去脉与创新突破
论文阅读·人工智能
北京地铁1号线3 天前
GPT-2论文阅读:Language Models are Unsupervised Multitask Learners
论文阅读·gpt·语言模型
张较瘦_4 天前
[论文阅读] 人工智能 + 软件工程 | 软件架构中自然问题主动辅助研究:从挑战到解决方案
论文阅读·人工智能·软件工程
有Li4 天前
通过具有一致性嵌入的大语言模型实现端到端乳腺癌放射治疗计划制定|文献速递-最新论文分享
论文阅读·深度学习·分类·医学生
张较瘦_4 天前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习