GLIP,FLIP论文阅读

Scaling Language-Image Pre-training via Masking(FLIP,2023)👍

贡献:

1.图像端引入MAE的随机MASK,image encoder只处理未mask的patches(和之前的MAE方法一致),减少了输入序列长度加速训练,减少memory开销。

text端没引入mask是因为text信息比较dense(图片信息比较稀疏),mask掉效果反而不好,之后是选择mask掉text

padding的地方提升了精度。

2.做了三个方面的scale:说明model和data的scale还是很重要的,不同数据集相同大小也会对模型造成影响

  • model scaling:vit变大,效果很直观的好
  • data scaling:将预训练数据集从LAION-400M扩展到更大的数据集LAION-2B(固定训练过程采样的样本总量)
  • schedule scaling :增加训练过程的采样数据量(从12.8B->25.6B,即训练epochs从32增加至64


下图绿色划线:增大VIT有利于transfer learning,增加数据量有利于做zero shot

模型

Ablation study

(a)我觉得可能提升的一个因素是bz大了,负样本也多了,效果好,作者不做相同bz的实验

(d)说明了减少mask率微调几个epoch有有助于提升精度


GLIP:Grounded Language-Image Pre-training(2022)👍

模型:

Language-Aware Deep Fusion:

1.image encoder 和 text encoder 抽取图像和文本的特征

2.对抽取的特征进行cross attention ,获得更好的交互后的特征:

X-MHA:cross-modality multi-head attention module,类似cross attention ,qk算attn,各自的v分别算一次

上图(B)是在(A)的基础上添加了deep fusion,涨点还是很明显的,增加数据量涨点也很明显

相关推荐
有Li2 天前
关注与优化:用于骨龄评估的交互式关键点定位与颈椎定量分析|文献速递-深度学习人工智能医疗图像
论文阅读·医学生
AustinCyy2 天前
【论文笔记】DOC: Improving Long Story Coherence With Detailed Outline Control
论文阅读·nlp
weixin_443290693 天前
【论文阅读-Part1】PIKE-RAG: sPecIalized KnowledgE and Rationale Augmented Generation
大数据·论文阅读
不解风水5 天前
【论文阅读】一种基于经典机器学习的肌电下肢意图检测方法,用于人机交互系统
论文阅读·人机交互
爱补鱼的猫猫5 天前
17、CryptoMamba论文笔记
论文阅读
大熊背5 天前
《Fast Automatic White Balancing Method by Color Histogram Stretching》论文笔记
论文阅读·白平衡
CV-杨帆6 天前
论文阅读 arxiv 2024 MemGPT: Towards LLMs as Operating Systems
论文阅读
AAA锅包肉批发6 天前
论文阅读:Aircraft Trajectory Prediction Model Based on Improved GRU Structure
论文阅读·深度学习·gru
星夜Zn7 天前
Nature论文-预测和捕捉人类认知的基础模型-用大模型模拟人类认知
论文阅读·人工智能·大语言模型·nature·认知建模·统一认知模型
dundunmm7 天前
【论文阅读】Deep Adversarial Multi-view Clustering Network
论文阅读·人工智能·深度学习·聚类·对抗网络·多视图聚类·深度多视图聚类