线性代数相关笔记

线性基

导入

线性基,顾名思义,就是一个包含数字最少的集合,使得原集合中的任何数都能用线性基中的元素表示。

集合中的元素满足一些性质:

  • 原集合中的任意元素都可以用线性基中的若干元素的异或和表示
  • 线性基中任意数异或和不为 0 0 0,否则不满足集合大小最小
  • 以任意顺序枚举原集合中元素,所得集合大小相同
  • 大小为 n n n 的线性基可以表示 2 n 2^n 2n 个数;若线性基中存在二进制第 i i i 位为 1 1 1 的数,则可以表示 2 n − 1 2^{n-1} 2n−1 个二进制下第 i i i 位为 1 1 1 的数。

操作

插入

我们用数组 p 表示线性基,假设要插入 x x x,从高到低枚举 x x x 的二进制的每一位数字,如果 x x x 的第 i i i 位为 1 1 1 且 p i = 0 p_i=0 pi=0,那么令 p i = x p_i=x pi=x 并结束插入;否则,令 x^=p[i],继续枚举下一位。

cpp 复制代码
void insert(int x)
{
    for(int i=50;i>=0;--i)
        if(x>>i&1)
        {
            if(!p[i]) {p[i]=x;break;}
            else x^=p[i];
        }
}

求异或最大值

求原集合的子集的异或最大值,利用贪心思想。若 ans^p[i]>ans,则 ans^=p[i]

cpp 复制代码
int pmax()
{
    int ans=0;
    for(int i=50;i>=0;--i)
		if((ans^p[i])>ans) ans^=p[i];
	return ans;
}

求异或最小值

分两种情况考虑:

  • 线性基大小 < < < 原集合大小:原集合中一定存在异或和为 0 0 0 的一些数,所以异或最小值为 0 0 0。
  • 线性基大小 = = = 原集合大小:在线性基内求异或最小值,线性基内的最小元素与其他元素异或得到的值一定更大,所以异或最小值为线性基中最小元素。

剩的异或 k k k 小值先咕了 QwQ 本来学线性基是想过 YbtOJ最大异或对的,结果发现线性基是任意数的最大异或和,这一道题是一对,只能用 trie 树


练手板子题

代码如下:

cpp 复制代码
#include <bits/stdc++.h>
using namespace std;
#define int long long

int p[55];

void insert(int x)
{
    for(int i=50;i>=0;--i)
        if(x>>i&1)
        {
            if(!p[i]) {p[i]=x;break;}
            else x^=p[i];
        }
}

int pmax()
{
    int ans=0;
    for(int i=50;i>=0;--i)
		if((ans^p[i])>ans) ans^=p[i];
	return ans;
}

signed main()
{
	int n,x;cin>>n;
	for(int i=1;i<=n;i++) cin>>x,insert(x);
	cout<<pmax();
	return 0;
}

行列式

行列式,是一种对于矩阵的特殊形式------方阵的表示形式。所谓方阵,就是 n × n n\times n n×n的矩阵。

一个 n × n n\times n n×n 的方阵 A A A 的行列式记为 det ⁡ ( A ) \det(A) det(A) 或者 ∣ A ∣ |A| ∣A∣,一个 2 × 2 2\times2 2×2 矩阵的行列式可表示如下:
det ⁡ ( a b c d ) = a d − b c \det \begin{pmatrix} a&b\\ c&d \end{pmatrix}=ad-bc det(acbd)=ad−bc

把一个 n n n 阶行列式中的元素 a i j a_{ij} aij 所在的第 i i i行和第 j j j列划去后,留下来的 n − 1 n-1 n−1 阶行列式叫做元素 a i j a_{ij} aij 的余子式,记作 M i j M_{ij} Mij。记 A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(−1)i+jMij,叫做元素 a i j a_{ij} aij 的代数余子式。

一个 n × n n\times n n×n 矩阵的行列式等于其任意行(或列)的元素与对应的代数余子式乘积之和,即:
det ⁡ ( A ) = a i 1 A i 1 + ⋯ + a i n + A i n = ∑ j = 1 n a i j ( − 1 ) i + j det ⁡ ( A i j ) \det(A)=a_{i1}A_{i1}+\cdots+a_{in}+A_{in}=\sum_{j=1}^na_{ij}(-1)^{i+j}\det(A_{ij}) det(A)=ai1Ai1+⋯+ain+Ain=j=1∑naij(−1)i+jdet(Aij)

代码实现:

cpp 复制代码
int dett(int a[maxn][maxn],int n)//n为阶数
{
    int dett=0,k=0,h=0;
    if(n==1) return a[0][0];
    else if(n==2) return a[0][0]*a[1][1]-a[0][1]*a[1][0];
    else
    {
        for(int p=0;p<n;p++)
        {
            for(int i=0;i<n;i++)
                for(int j=0;j<n;j++)
                {
                    if(j==p) continue;
                    tmp[h][k]=a[i][j],k++;
                    if(k==n-1) h++,k=0;
                }
            dett=dett+a[0][p]*pow(-1,p)*det(tmp,n-1)
        }
        return dett;
    }
}

高斯消元

前置芝士

三角矩阵

上三角矩阵的对角线左下方的系数全部为 0 0 0,下三角矩阵的对角线右上方的系数全部为 0 0 0。三角矩阵可以看作是一般方阵的一种简化情形。由于带三角矩阵的矩阵方程容易求解,在解多元线性方程组时,总是将其系数矩阵通过初等变换化为三角矩阵来求解。

举个栗子,下面的矩阵 U U U 就是一个上三角矩阵。
U = [ u 1 , 1 u 1 , 2 u 1 , 3 ⋯ u 1 , n 0 u 2 , 2 u 2 , 3 ⋯ u 2 , n 0 0 ⋱ ⋱ ⋮ ⋮ ⋮ 0 ⋱ u n − 1 , n 0 0 ⋯ 0 u n , n ] U= \begin{bmatrix} u_{1,1}&u_{1,2}&u_{1,3}&\cdots&u_{1,n}\\ 0&u_{2,2}&u_{2,3}&\cdots&u_{2,n}\\ 0&0&\ddots&\ddots&\vdots\\ \vdots&\vdots&0&\ddots&u_{n-1,n}\\ 0&0&\cdots&0&u_{n,n} \end{bmatrix} U= u1,100⋮0u1,2u2,20⋮0u1,3u2,3⋱0⋯⋯⋯⋱⋱0u1,nu2,n⋮un−1,nun,n

增广矩阵

又称扩增矩阵,就是在系数矩阵的右边添上一列,这一列是线性方程组的等号右边的值。

高斯消元

基本思想

通过一系列的加减消元运算,将方程组化为上三角矩阵。然后再逐一回代求出 x x x。

实现过程

解方程:
{ 3 x 1 + 2 x 2 + x 3 = 6 2 x 1 + 2 x 2 + 2 x 3 = 4 4 x 1 − 2 x 2 − 2 x 3 = 2 \begin{cases} 3x_1+2x_2+x_3=6\\ 2x_1+2x_2+2x_3=4\\ 4x_1-2x_2-2x_3=2 \end{cases} ⎩ ⎨ ⎧3x1+2x2+x3=62x1+2x2+2x3=44x1−2x2−2x3=2

我们把这个方程组写成增广矩阵的形式:

相关推荐
Yawesh_best7 小时前
告别系统壁垒!WSL+cpolar 让跨平台开发效率翻倍
运维·服务器·数据库·笔记·web安全
Ccjf酷儿9 小时前
操作系统 蒋炎岩 3.硬件视角的操作系统
笔记
习习.y9 小时前
python笔记梳理以及一些题目整理
开发语言·笔记·python
在逃热干面10 小时前
(笔记)自定义 systemd 服务
笔记
DKPT11 小时前
ZGC和G1收集器相比哪个更好?
java·jvm·笔记·学习·spring
QT 小鲜肉12 小时前
【孙子兵法之上篇】001. 孙子兵法·计篇
笔记·读书·孙子兵法
星轨初途13 小时前
数据结构排序算法详解(5)——非比较函数:计数排序(鸽巢原理)及排序算法复杂度和稳定性分析
c语言·开发语言·数据结构·经验分享·笔记·算法·排序算法
QT 小鲜肉14 小时前
【孙子兵法之上篇】001. 孙子兵法·计篇深度解析与现代应用
笔记·读书·孙子兵法
love530love16 小时前
【笔记】ComfUI RIFEInterpolation 节点缺失问题(cupy CUDA 安装)解决方案
人工智能·windows·笔记·python·插件·comfyui
愚戏师16 小时前
MySQL 数据导出
数据库·笔记·mysql