【算法训练-动态规划 五】【二维DP问题】编辑距离

废话不多说,喊一句号子鼓励自己:程序员永不失业,程序员走向架构!本篇Blog的主题是【动态规划】,使用【数组】这个基本的数据结构来实现,这个高频题的站点是:CodeTop,筛选条件为:目标公司+最近一年+出现频率排序,由高到低的去牛客TOP101去找,只有两个地方都出现过才做这道题(CodeTop本身汇聚了LeetCode的来源),确保刷的题都是高频要面试考的题。

明确目标题后,附上题目链接,后期可以依据解题思路反复快速练习,题目按照题干的基本数据结构分类,且每个分类的第一篇必定是对基础数据结构的介绍

编辑距离【HARD】

终于又来到一道看了很久的高频题目这里

题干

搞定了一系列的简单题,来个编辑距离练练手

解题思路

原题解地址,解决两个字符串的动态规划问题,一般都是用两个指针 i, j 分别指向两个字符串的最后,然后一步步往前移动,缩小问题的规模

设两个字符串分别为 radapple ,为了把 s1 变成 s2,算法会这样进行

暴力递归

base case 是 i 走完 s1 或 j 走完 s2,可以直接返回另一个字符串剩下的长度。对于每对儿字符 s1[i] 和 s2[j],可以有四种操作:

java 复制代码
if s1[i] == s2[j]:
    啥都别做(skip)
    i, j 同时向前移动
else:
    三选一:
        插入(insert)
        删除(delete)
        替换(replace)

有这个框架,问题就已经解决了。读者也许会问,这个「三选一」到底该怎么选择呢?很简单,全试一遍,哪个操作最后得到的编辑距离最小,就选谁

java 复制代码
int minDistance(String s1, String s2) {
    int m = s1.length(), n = s2.length();
    // i,j 初始化指向最后一个索引
    return dp(s1, m - 1, s2, n - 1);
}

// 定义:返回 s1[0..i] 和 s2[0..j] 的最小编辑距离
int dp(String s1, int i, String s2, int j) {
    // base case
    if (i == -1) return j + 1;
    if (j == -1) return i + 1;

    if (s1.charAt(i) == s2.charAt(j)) {
        return dp(s1, i - 1, s2, j - 1); // 啥都不做
    }
    return min(
        dp(s1, i, s2, j - 1) + 1,    // 插入
        dp(s1, i - 1, s2, j) + 1,    // 删除
        dp(s1, i - 1, s2, j - 1) + 1 // 替换
    );
}

int min(int a, int b, int c) {
    return Math.min(a, Math.min(b, c));
}
情况一:什么都不做
java 复制代码
if s1[i] == s2[j]:
    return dp(s1, i - 1, s2, j - 1); # 啥都不做
# 解释:
# 本来就相等,不需要任何操作
# s1[0..i] 和 s2[0..j] 的最小编辑距离等于
# s1[0..i-1] 和 s2[0..j-1] 的最小编辑距离
# 也就是说 dp(i, j) 等于 dp(i-1, j-1)

如果 s1[i] != s2[j],就要对三个操作递归了

情况二:插入操作
java 复制代码
dp(s1, i, s2, j - 1) + 1,    # 插入
# 解释:
# 我直接在 s1[i] 插入一个和 s2[j] 一样的字符
# 那么 s2[j] 就被匹配了,前移 j,继续跟 i 对比
# 别忘了操作数加一

插入操作

情况三:删除操作
java 复制代码
dp(s1, i - 1, s2, j) + 1,    # 删除
# 解释:
# 我直接把 s[i] 这个字符删掉
# 前移 i,继续跟 j 对比
# 操作数加一
情况四:替换操作
java 复制代码
dp(s1, i - 1, s2, j - 1) + 1 # 替换
# 解释:
# 我直接把 s1[i] 替换成 s2[j],这样它俩就匹配了
# 同时前移 i,j 继续对比
# 操作数加一


a字符被替换为p字符

java 复制代码
int dp(i, j) {
    dp(i - 1, j - 1); // #1
    dp(i, j - 1);     // #2
    dp(i - 1, j);     // #3
}

对于子问题 dp(i-1, j-1),如何通过原问题 dp(i, j) 得到呢?有不止一条路径,比如 dp(i, j) -> #1dp(i, j) -> #2 -> #3。一旦发现一条重复路径,就说明存在巨量重复路径,也就是重叠子问题

动态规划

接下来用DP table来优化一下,降低重复子问题,首先明确 dp 数组的含义,dp 数组是一个二维数组,长这样

有了之前递归解法的铺垫,应该很容易理解。dp[..][0] 和 dp[0][..] 对应 base case,dp[i][j] 的含义和之前的 dp 函数类似

  • 替换操作 :word1的0~i-1位置与word2的0~j-1位置的字符都相同,只是当前位置的字符不匹配,进行替换操作后两者变得相同dp[i-1][j-1] 表示需要进行替换操作才能转到dp[i][j] , 所以此时dp[i][j]=dp[i-1][j-1]+1(这个加1代表执行替换操作)
  • 删除操作 : 若此时word1的0~i-1位置与word2的0~j位置已经匹配了,此时多出了word1的i位置字符,应把它删除掉,才能使此时word1的0~i(这个i是执行了删除操作后新的i)和word2的0~j位置匹配,因此此时dp[i][j]=dp[i-1][j]+1(这个加1代表执行删除操作)
  • 插入操作 :若此时word1的0~i位置只是和word2的0~j-1位置匹配,此时只需要在原来的i位置后面插入一个和word2的j位置相同的字符使得此时的word1的0~i(这个i是执行了插入操作后新的i)和word2的0~j匹配得上,所以此时dp[i][j]=dp[i][j-1]+1(这个加1代表执行插入操作)

有了之前递归解法的铺垫,应该很容易理解。dp[..][0]dp[0][..] 对应 base case,dp[i][j] 的含义和之前的 dp 函数类似

java 复制代码
int dp(String s1, int i, String s2, int j)
// 返回 s1[0..i] 和 s2[0..j] 的最小编辑距离

dp 函数的 base case 是 i, j 等于 -1,而数组索引至少是 0,所以 dp 数组会偏移一位

java 复制代码
dp[i-1][j-1]
// 存储 s1[0..i] 和 s2[0..j] 的最小编辑距离

既然 dp 数组和递归 dp 函数含义一样,也就可以直接套用之前的思路写代码,唯一不同的是,DP table 是自底向上求解,递归解法是自顶向下求解

java 复制代码
int minDistance(String s1, String s2) {
    int m = s1.length(), n = s2.length();
    // 定义:s1[0..i] 和 s2[0..j] 的最小编辑距离是 dp[i+1][j+1]
    int[][] dp = new int[m + 1][n + 1];
    // base case 
    for (int i = 1; i <= m; i++)
        dp[i][0] = i;
    for (int j = 1; j <= n; j++)
        dp[0][j] = j;
    // 自底向上求解
    for (int i = 1; i <= m; i++) {
        for (int j = 1; j <= n; j++) {
            if (s1.charAt(i-1) == s2.charAt(j-1)) {
                dp[i][j] = dp[i - 1][j - 1];
            } else {
                dp[i][j] = min(
                    dp[i - 1][j] + 1,
                    dp[i][j - 1] + 1,
                    dp[i - 1][j - 1] + 1
                );
            }
        }
    }
    // 储存着整个 s1 和 s2 的最小编辑距离
    return dp[m][n];
}

int min(int a, int b, int c) {
    return Math.min(a, Math.min(b, c));
}

代码实现

给出代码实现基本档案

基本数据结构数组
辅助数据结构
算法动态规划
技巧

其中数据结构、算法和技巧分别来自:

  • 10 个数据结构:数组、链表、栈、队列、散列表、二叉树、堆、跳表、图、Trie 树
  • 10 个算法:递归、排序、二分查找、搜索、哈希算法、贪心算法、分治算法、回溯算法、动态规划、字符串匹配算法
  • 技巧:双指针、滑动窗口、中心扩散

当然包括但不限于以上

java 复制代码
import java.util.*;
// 注意类名必须为 Main, 不要有任何 package xxx 信息
class Solution
{
    // 编辑距离,返回两个字符串操作的最小距离
    public int minDistance(String word1, String word2)
    {
        // 1 入参校验
        if(word1.length() < 1 && word2.length() < 1)
        {
            return 0;
        }
        // 2 定义行列长度,word1作为竖,word2作为行
        int m = word1.length();
        int n = word2.length();

        // 定义:s1[0..i] 和 s2[0..j] 的最小编辑距离是 dp[i+1][j+1]
        int[][] dp = new int[m + 1][n + 1];

        // 4 初始化base case
        for(int i = 1; i <= m; i++)
        {
            dp[i][0] = i;
        }
        for(int j = 1; j <= n; j++)
        {
            dp[0][j] = j;
        }
        
        // 5 状态转移方程:自底向上求解,从头开始比较,i=0和j=0的位置初始化为基本操作数
        for(int i = 1; i <= m; i++)
        {
            for(int j = 1; j <= n; j++)
            {
                if(word1.charAt(i-1) == word2.charAt(j-1))
                {
                    dp[i][j] = dp[i - 1][j - 1];
                }else
                {
                    dp[i][j] = minCompare(dp[i - 1][j] + 1, dp[i][j - 1] + 1, dp[i - 1][j - 1] + 1);
                }
            }
        }

        return dp[m][n];
    }
    
    private int minCompare(int a, int b, int c)
    {
        return Math.min(a, Math.min(b, c));
    }
}
  • 第一行,是 word1 为空,变成 word2 最少步数,就是插入操作
  • 第一列,是 word2 为空,word1要变为word2(也就是空)需要的最少步数,就是删除操作
java 复制代码
(一)、当word1[i]==word2[j]时,由于遍历到了i和j,说明word1的0~i-1和word2的0~j-1的匹配结果已经生成,
由于当前两个字符相同,因此无需做任何操作,dp[i][j]=dp[i-1][j-1]

(二)、当word1[i]!=word2[j]时,可以进行的操作有3个:
      ① 替换操作:可能word1的0~i-1位置与word2的0~j-1位置的字符都相同,
           只是当前位置的字符不匹配,进行替换操作后两者变得相同,
           所以此时dp[i][j]=dp[i-1][j-1]+1(这个加1代表执行替换操作)
      ②删除操作:若此时word1的0~i-1位置与word2的0~j位置已经匹配了,
         此时多出了word1的i位置字符,应把它删除掉,才能使此时word1的0~i(这个i是执行了删除操作后新的i)
         和word2的0~j位置匹配,因此此时dp[i][j]=dp[i-1][j]+1(这个加1代表执行删除操作)
      ③插入操作:若此时word1的0~i位置只是和word2的0~j-1位置匹配,
          此时只需要在原来的i位置后面插入一个和word2的j位置相同的字符使得
          此时的word1的0~i(这个i是执行了插入操作后新的i)和word2的0~j匹配得上,
          所以此时dp[i][j]=dp[i][j-1]+1(这个加1代表执行插入操作)
      ④由于题目所要求的是要最少的操作数:所以当word1[i] != word2[j] 时,
          需要在这三个操作中选取一个最小的值赋格当前的dp[i][j]
(三)总结:状态方程为:
if(word1[i] == word2[j]):
      dp[i][j] = dp[i-1][j-1]
else:
       min(dp[i-1][j-1],dp[i-1][j],dp[i][j-1])+1


PS:大佬的代码中word1.charAt(i-1)==word2.charAt(j-1)的原因是:
     初始化DP Table时dp[i][0]和dp[0][j]已经填写完成,所以接下来填表需要从1开始,
     但是字符的比较需要从0开始,因此才这样子写

复杂度分析

时间复杂度:O(N^2) ,这里 N 是数组的长度,我们写了两个 for 循环,每个 for 循环的时间复杂度都是线性的;

空间复杂度:O(N),要使用和输入数组长度相等的状态数组,因此空间复杂度是 O(N)。

相关推荐
earthzhang202115 小时前
《深入浅出HTTPS》读书笔记(28):DSA数字签名
开发语言·网络协议·算法·https·1024程序员节
比特在路上1 天前
初阶数据结构【栈及其接口的实现】
c语言·开发语言·数据结构·1024程序员节
lzb_kkk2 天前
【C++】C++11异步操作
c语言·开发语言·c++·1024程序员节
奈斯ing3 天前
【Oracle篇】深入了解执行计划中的访问路径(含表级别、B树索引、位图索引、簇表四大类访问路径)
运维·数据库·oracle·1024程序员节
lzb_kkk5 天前
【C++】JsonCpp库
开发语言·c++·json·1024程序员节
earthzhang202110 天前
《深入浅出HTTPS》读书笔记(24):椭圆曲线密码学
网络·网络协议·算法·https·1024程序员节
陶然同学16 天前
【Java】IO流练习
java·服务器·开发语言·1024程序员节
一个通信老学姐16 天前
专业140+总分410+南京大学851信号与系统考研经验南大电子信息通信集成电路,真题,大纲。参考书。
考研·信息与通信·信号处理·1024程序员节
明明真系叻19 天前
第二十六周机器学习笔记:PINN求正反解求PDE文献阅读——正问题
人工智能·笔记·深度学习·机器学习·1024程序员节
希忘auto22 天前
详解Redis的常用命令
redis·1024程序员节