Python中文分词、词频统计并制作词云图

中文分词、词频统计并制作词云图是统计数据常用的功能,这里用到了三个模块快速实现这个功能。

中文分词、词频统计

python 复制代码
import jieba
from collections import Counter

# 1. 读取文本内容并进行分词
with open('demo.txt', mode='r', encoding='gbk') as f:
    report = f.read()
words = jieba.cut(report)

# 2. 按指定长度提取词
report_words = []
for word in words:
    if len(word) >= 4:
        report_words.append(word)
print(report_words)

# 3. 统计高频词汇
result = Counter(report_words).most_common(50)
print(result)

上面代码用jieba模块进行分词,用collections进行词频统计。

jieba是一个优秀的第三方中文词库,用于中文分词。中文分词指的是将一个汉字序列切分成一个一个单独的词。jieba可以帮助你快速高效地完成中文分词,支持三种分词模式:精确模式、全模式和搜索引擎模式。

collections是Python标准库中的一个模块,提供了一些额外的容器类型,以提供Python标准内建容器dictlistsettuple的替代选择。这些容器类型包括namedtupledequeCounter等。

简单词云图

python 复制代码
import jieba.posseg as pseg
from collections import Counter
from wordcloud import WordCloud

# 1. 读取文本内容并进行分词
with open('demo.txt', mode='r', encoding='gbk') as f:
    report = f.read()
words = pseg.cut(report)

# 2. 按指定长度和词性提取词
report_words = []
for word, flag in words:
    if (len(word) >= 4) and ('n' in flag):
        report_words.append(word)
# print(report_words)

# 3. 统计高频词汇
result = Counter(report_words).most_common(50)
# print(result)

# 4. 绘制词云图
content = dict(result)
# print(content)
wc = WordCloud(font_path='PINGFANG MEDIUM.TTF', background_color='white', width=1000, height=600)
wc.generate_from_frequencies(content)
wc.to_file('词云图1.png')

这里用到了wordcloud模块来生成词云图。

按照图片绘制词云图

python 复制代码
import jieba.posseg as pseg
from collections import Counter
from PIL import Image
import numpy as np
from wordcloud import WordCloud

# 1. 读取文本内容并进行分词
with open('demo.txt', mode='r', encoding='gbk') as f:
    report = f.read()
words = pseg.cut(report)

# 2. 按指定长度和词性提取词
report_words = []
for word, flag in words:
    if (len(word) >= 4) and ('n' in flag):
        report_words.append(word)
# print(report_words)

# 3. 统计高频词汇
result = Counter(report_words).most_common(300)
# print(result)

# 4. 绘制词云图
mask_pic = Image.open('map.png')
mask_data = np.array(mask_pic)
print(mask_data)
content = dict(result)
wc = WordCloud(font_path='PINGFANG MEDIUM.TTF', background_color='white', mask=mask_data)
wc.generate_from_frequencies(content)
wc.to_file('词云图2.png')

这里给WordCloud加了mask遮罩参数。

按照图片绘制渐变词云图

python 复制代码
import jieba.posseg as pseg
from collections import Counter
from PIL import Image
import numpy as np
from wordcloud import WordCloud, ImageColorGenerator

# 1. 读取文本内容并进行分词
with open('demo.txt', mode='r', encoding='gbk') as f:
    report = f.read()
words = pseg.cut(report)

# 2. 按指定长度和词性提取词
report_words = []
for word, flag in words:
    if (len(word) >= 4) and ('n' in flag):
        report_words.append(word)
# print(report_words)

# 3. 统计高频词汇
result = Counter(report_words).most_common(300)
# print(result)

# 4. 绘制词云图
mask_pic = Image.open('map.png')
mask_data = np.array(mask_pic)
content = dict(result)
wc = WordCloud(font_path='PINGFANG MEDIUM.TTF', background_color='white', mask=mask_data)
wc.generate_from_frequencies(content)
mask_colors = ImageColorGenerator(mask_data)
wc.recolor(color_func=mask_colors)
wc.to_file('词云图3.png')

这里用recolor重绘了颜色。

相关推荐
SizeTheMoment15 天前
List介绍
1024程序员节
开利网络17 天前
产业互联网+三融战略:重构企业增长密码
大数据·运维·服务器·人工智能·重构·1024程序员节
wei_shuo24 天前
从数据中台到数据飞轮:实现数据驱动的升级之路
1024程序员节·数据飞轮
玖剹1 个月前
矩阵区域和 --- 前缀和
数据结构·c++·算法·leetcode·矩阵·动态规划·1024程序员节
jamison_12 个月前
文心一言与 DeepSeek 的竞争分析:技术先发优势为何未能转化为市场主导地位?
人工智能·ai·chatgpt·gpt-3·1024程序员节
NaZiMeKiY2 个月前
HTML5前端第六章节
前端·html·html5·1024程序员节
jamison_12 个月前
颠覆未来:解锁ChatGPT衍生应用的无限可能(具体应用、功能、付费模式与使用情况)
ai·chatgpt·1024程序员节
NaZiMeKiY3 个月前
HTML5前端第七章节
1024程序员节
earthzhang20213 个月前
《Python深度学习》第四讲:计算机视觉中的深度学习
人工智能·python·深度学习·算法·计算机视觉·numpy·1024程序员节
明明真系叻3 个月前
2025.3.2机器学习笔记:PINN文献阅读
人工智能·笔记·深度学习·机器学习·1024程序员节·pinn