【wespeaker】模型ECAPA_TDNN介绍

本次主要介绍开源项目wespeaker模型介绍

1. 模型超参数

model_args:

feat_dim: 80

embed_dim: 192

pooling_func: "ASTP"

projection_args:

project_type: "softmax" # add_margin, arc_margin, sphere, softmax

scale: 32.0

easy_margin: False

2. 模型结构

2.1 Layer1: input层

x:(B,F,T) F=80

将原始80维fbank特征进行映射;

x->conv->relu->bn->(B,F',T) F'=512

进入下面的layer2-4

2.2 Layer2-4:核心空洞卷积层

Layer2和Layer3、Layer4相似,只有两个超参数不同。下面介绍Layer2的结构。

整体结构

x: (B,F,T) F=512

x -> block1~4 -> new_x

return x + new_x

block1

x:(B,F,T) F=512

x->conv->relu->bn->(B,F,T)

block2

x: (B,F,T) F=512

x分为8块->(B,F',T) F'=64

x1~x7执行:

conv-relu->bn->(B,F',T)

x8不变

x1~x8合并->(B,F,T) F=512

block3

x:(B,F,T) F=512

x->conv->relu->bn->(B,F,T)

block4

SE block,对F维进行缩放

x:(B,F,T) F=512

x对最后一个维度求mean->(B,F)

(B,F) -> Linear1->Relu->Linear2->(B,F)->sigmoid->unsqueeze->(B,F,1) 得到scale

x * scale ->(B,F,T)

上图中标红的部分分别为layer2/3/4的参数,其他均相同

2.3 pool:池化层

2.3.1前处理

out2、out3、out4按照dim=1进行拼接->(B,3*F,T) (F=512)

按照下图的卷积参数进行卷积->(B,3F,T)
ReLU->(B,3
F,T)

然后进行下面的pool

2.3.2Attentive statistics pooling

x : (B,F,T) F=1536

对x在-1维度求mean,扩展为x维度;

对x在-1维度求std,扩展为x维度;

x拼接mean、std为(B,3*F,T) new_x

new_x->下图中的第一个卷积->tanh->下图中第二个卷积->(B,F,T) ->对最后一维度求softmax得到attention

attention * x ,最后一维度sum,得到mean;(B,F)

attention * x_2, 最后一维度sum - mean_2,得到std;(B,F)

拼接mean std->(B,2*F) 返回(B,3072)

2.3.3后处理(embed层)

x: (B,F) F=3072

x->bn-> (B,F) ->embed(下图的Linear)->(B,F') F'=192

2.4 projection:映射层

根据具体的任务,将embed层映射为实际的分类;

x:(B,F) F=192

x->bn->relu->linear->(B,F') F'=6

相关推荐
西猫雷婶1 小时前
pytorch基本运算-梯度运算:requires_grad_(True)和backward()
人工智能·pytorch·python·深度学习·机器学习
代码程序猿RIP4 小时前
【Pytorch】(1)Pytorch环境安装-①创建虚拟环境
人工智能·pytorch·python
jieshenai8 小时前
torch 高维矩阵乘法分析,一文说透
pytorch·深度学习·矩阵
苏苏susuus1 天前
深度学习:PyTorch张量基本运算、形状改变、索引操作、升维降维、维度转置、张量拼接
人工智能·pytorch·深度学习
凡人的AI工具箱1 天前
PyTorch深度学习框架60天进阶学习计划 - 第58天端到端对话系统(一):打造你的专属AI语音助手
人工智能·pytorch·python·深度学习·mcp·a2a
知舟不叙1 天前
深度学习——基于PyTorch的MNIST手写数字识别详解
人工智能·pytorch·深度学习·手写数字识别
Crabfishhhhh1 天前
神经网络学习-神经网络简介【Transformer、pytorch、Attention介绍与区别】
pytorch·python·神经网络·学习·transformer
whyeekkk1 天前
python打卡第52天
pytorch·python·深度学习
猎嘤一号2 天前
使用 PyTorch 和 SwanLab 实时可视化模型训练
人工智能·pytorch·深度学习
福大大架构师每日一题2 天前
pytorch v2.7.1 发布!全面修复关键BUG,性能与稳定性再升级,2025年深度学习利器必备!
pytorch·深度学习·bug