【wespeaker】模型ECAPA_TDNN介绍

本次主要介绍开源项目wespeaker模型介绍

1. 模型超参数

model_args:

feat_dim: 80

embed_dim: 192

pooling_func: "ASTP"

projection_args:

project_type: "softmax" # add_margin, arc_margin, sphere, softmax

scale: 32.0

easy_margin: False

2. 模型结构

2.1 Layer1: input层

x:(B,F,T) F=80

将原始80维fbank特征进行映射;

x->conv->relu->bn->(B,F',T) F'=512

进入下面的layer2-4

2.2 Layer2-4:核心空洞卷积层

Layer2和Layer3、Layer4相似,只有两个超参数不同。下面介绍Layer2的结构。

整体结构

x: (B,F,T) F=512

x -> block1~4 -> new_x

return x + new_x

block1

x:(B,F,T) F=512

x->conv->relu->bn->(B,F,T)

block2

x: (B,F,T) F=512

x分为8块->(B,F',T) F'=64

x1~x7执行:

conv-relu->bn->(B,F',T)

x8不变

x1~x8合并->(B,F,T) F=512

block3

x:(B,F,T) F=512

x->conv->relu->bn->(B,F,T)

block4

SE block,对F维进行缩放

x:(B,F,T) F=512

x对最后一个维度求mean->(B,F)

(B,F) -> Linear1->Relu->Linear2->(B,F)->sigmoid->unsqueeze->(B,F,1) 得到scale

x * scale ->(B,F,T)

上图中标红的部分分别为layer2/3/4的参数,其他均相同

2.3 pool:池化层

2.3.1前处理

out2、out3、out4按照dim=1进行拼接->(B,3*F,T) (F=512)

按照下图的卷积参数进行卷积->(B,3F,T)
ReLU->(B,3
F,T)

然后进行下面的pool

2.3.2Attentive statistics pooling

x : (B,F,T) F=1536

对x在-1维度求mean,扩展为x维度;

对x在-1维度求std,扩展为x维度;

x拼接mean、std为(B,3*F,T) new_x

new_x->下图中的第一个卷积->tanh->下图中第二个卷积->(B,F,T) ->对最后一维度求softmax得到attention

attention * x ,最后一维度sum,得到mean;(B,F)

attention * x_2, 最后一维度sum - mean_2,得到std;(B,F)

拼接mean std->(B,2*F) 返回(B,3072)

2.3.3后处理(embed层)

x: (B,F) F=3072

x->bn-> (B,F) ->embed(下图的Linear)->(B,F') F'=192

2.4 projection:映射层

根据具体的任务,将embed层映射为实际的分类;

x:(B,F) F=192

x->bn->relu->linear->(B,F') F'=6

相关推荐
l12345sy2 天前
Day24_【深度学习—广播机制】
人工智能·pytorch·深度学习·广播机制
蒋星熠3 天前
如何在Anaconda中配置你的CUDA & Pytorch & cuNN环境(2025最新教程)
开发语言·人工智能·pytorch·python·深度学习·机器学习·ai
weiwei228443 天前
Torch核心数据结构Tensor(张量)
pytorch·tensor
wL魔法师4 天前
【LLM】大模型训练中的稳定性问题
人工智能·pytorch·深度学习·llm
技术小黑4 天前
Transformer系列 | Pytorch复现Transformer
pytorch·深度学习·transformer
DogDaoDao4 天前
神经网络稀疏化设计构架方法和原理深度解析
人工智能·pytorch·深度学习·神经网络·大模型·剪枝·网络稀疏
西猫雷婶4 天前
pytorch基本运算-Python控制流梯度运算
人工智能·pytorch·python·深度学习·神经网络·机器学习
ACEEE12224 天前
Stanford CS336 | Assignment 2 - FlashAttention-v2 Pytorch & Triotn实现
人工智能·pytorch·python·深度学习·机器学习·nlp·transformer
深耕AI5 天前
【PyTorch训练】准确率计算(代码片段拆解)
人工智能·pytorch·python
nuczzz5 天前
pytorch非线性回归
人工智能·pytorch·机器学习·ai