K-Means和KNN

主要区别

从无序 ---> 有序

从K-Means ---> KNN

  • KNN:监督学习,类别是已知的,对已知分类的数据进行训练和学习,找到不同类的特征,再对未分类的数据进行分类。
  • K-Means:无监督学习,事先不知道数据有几类,通过聚类分析将数据聚合成几个群体。聚类不需要对数据进行训练和学习。

KNN

原理

将预测点与所有点的距离进行计算,然后保存并排序,选出前面K个值看看哪些类别比较多,则预测的点就属于哪一类。

KNN也可以用于回归预测

算法步骤

对未知类别属性的数据集中每个点依次执行以下操作:

  1. 计算已知类别数据集中的点与当前点之间的距离;
    通常使用的是欧氏距离
  2. 按照距离递增次序排序;
  3. 选取与当前点距离最小的k个点;
    如何确定k?
    通过交叉验证,从选取一个较小的k值开始,不断增加k的值,然后计算验证集合的方差,最终找到一个比较合适的k值。
  4. 确定前k个点所在类别的出现频率;
  5. 返回前k个点出现频率最高的类别作为当前点的预测分类。

K-Means

原理

随机选取质心------计算各样本点和质心的距离后分类------再次选择新的质心

【扩展】

邻近度函数(即距离计算):

(1)曼哈顿距离:质心------中位数,目标函数------最小化对象到簇质心的距离和;

(2)平方欧几里得距离:质心------均值,目标函数------最小化对象到簇质心的距离的平方和;

(3)余弦距离:质心------均值,目标函数------最大化对象与其质心的余弦相似度和;

(4)Bregman散度:质心------均值,目标函数------最小化对象到簇质心的Bregman散度和。

算法步骤

  1. 随机选取k个质心(k值取决于想聚成几类);
  2. 计算样本到质心的距离,距离质心近的归为一类,分为k类;
  3. 求出分类后的每类的新质心;
  4. 再次计算样本到新质心的距离,距离质心距离近的归为一类;
  5. 判断新旧聚类是否相同,如果相同就代表已经聚类成功,如果没有则循环2-4。


相关推荐
光羽隹衡5 分钟前
机器学习的介绍
人工智能·机器学习
john_hjy6 分钟前
标量、向量、矩阵、张量
算法·机器学习·矩阵
qq_4308558810 分钟前
线代第一章行列式第八课:克莱姆法则(Cramer法则)
线性代数·算法·矩阵
free-elcmacom11 分钟前
机器学习进阶<2>基于朴素贝叶斯的电影评论情感分析
人工智能·机器学习
小妖66612 分钟前
力扣(LeetCode)- 542. 01 矩阵
算法·leetcode·矩阵
小年糕是糕手12 分钟前
【C++】内存管理(下)
java·c语言·开发语言·数据结构·c++·算法
CoderYanger14 分钟前
第 479 场周赛Q2——3770. 可表示为连续质数和的最大质数
java·数据结构·算法·leetcode·职场和发展
山土成旧客18 分钟前
机器学习打卡DAY18 | 回归问题全解析:模型对比、置信区间与Bootstrap实战
机器学习·回归·bootstrap
像风一样自由202018 分钟前
U-Net 图像分割算法:从零开始的完全指南
算法
云泽80822 分钟前
蓝桥杯算法精讲:前缀和与差分算法的应用与实战
算法·职场和发展·蓝桥杯