K-Means和KNN

主要区别

从无序 ---> 有序

从K-Means ---> KNN

  • KNN:监督学习,类别是已知的,对已知分类的数据进行训练和学习,找到不同类的特征,再对未分类的数据进行分类。
  • K-Means:无监督学习,事先不知道数据有几类,通过聚类分析将数据聚合成几个群体。聚类不需要对数据进行训练和学习。

KNN

原理

将预测点与所有点的距离进行计算,然后保存并排序,选出前面K个值看看哪些类别比较多,则预测的点就属于哪一类。

KNN也可以用于回归预测

算法步骤

对未知类别属性的数据集中每个点依次执行以下操作:

  1. 计算已知类别数据集中的点与当前点之间的距离;
    通常使用的是欧氏距离
  2. 按照距离递增次序排序;
  3. 选取与当前点距离最小的k个点;
    如何确定k?
    通过交叉验证,从选取一个较小的k值开始,不断增加k的值,然后计算验证集合的方差,最终找到一个比较合适的k值。
  4. 确定前k个点所在类别的出现频率;
  5. 返回前k个点出现频率最高的类别作为当前点的预测分类。

K-Means

原理

随机选取质心------计算各样本点和质心的距离后分类------再次选择新的质心

【扩展】

邻近度函数(即距离计算):

(1)曼哈顿距离:质心------中位数,目标函数------最小化对象到簇质心的距离和;

(2)平方欧几里得距离:质心------均值,目标函数------最小化对象到簇质心的距离的平方和;

(3)余弦距离:质心------均值,目标函数------最大化对象与其质心的余弦相似度和;

(4)Bregman散度:质心------均值,目标函数------最小化对象到簇质心的Bregman散度和。

算法步骤

  1. 随机选取k个质心(k值取决于想聚成几类);
  2. 计算样本到质心的距离,距离质心近的归为一类,分为k类;
  3. 求出分类后的每类的新质心;
  4. 再次计算样本到新质心的距离,距离质心距离近的归为一类;
  5. 判断新旧聚类是否相同,如果相同就代表已经聚类成功,如果没有则循环2-4。


相关推荐
极客学术工坊1 小时前
2022年第十二届MathorCup高校数学建模挑战赛-D题 移动通信网络站址规划和区域聚类问题
机器学习·数学建模·启发式算法·聚类
吃着火锅x唱着歌1 小时前
LeetCode 1128.等价多米诺骨牌对的数量
算法·leetcode·职场和发展
十八岁讨厌编程2 小时前
【算法训练营 · 补充】LeetCode Hot100(中)
算法·leetcode
橘颂TA2 小时前
【剑斩OFFER】算法的暴力美学——最小覆盖字串
算法·c/c++·就业
wearegogog1232 小时前
基于混合蛙跳算法和漏桶算法的无线传感器网络拥塞控制与分簇新方法
网络·算法
Tiandaren3 小时前
大模型应用03 || 函数调用 Function Calling || 概念、思想、流程
人工智能·算法·microsoft·数据分析
2301_795167203 小时前
玩转Rust高级应用 如何进行理解Refutability(可反驳性): 模式是否会匹配失效
开发语言·算法·rust
领航猿1号4 小时前
Pytorch 内存布局优化:Contiguous Memory
人工智能·pytorch·深度学习·机器学习
小当家.1054 小时前
[LeetCode]Hot100系列.贪心总结+思想总结
算法·leetcode·职场和发展
墨雪不会编程4 小时前
数据结构—排序算法篇二
数据结构·算法·排序算法