es查询限制10000,使用scroll

报错:

TransportError(500, 'search_phase_execution_exception', 'Result window is too large, from + size must be less than or equal to: [10000] but was [10010]. See the scroll api for a more efficient way to request large data sets. This limit can be set by changing the [index.max_result_window] index level setting.')

原因:

这个错误提示意味着你正在尝试从Elasticsearch中检索大量的数据,但是你的请求超过了Elasticsearch的默认结果窗口大小限制。默认情况下,Elasticsearch的结果窗口大小限制为10000,这意味着你一次最多只能检索10000个文档。

为了解决这个问题,你可以使用Elasticsearch的scroll API来检索大量的数据。scroll

API允许你在多个请求之间保持搜索上下文,以便你可以逐步检索大量的数据,而不会超出默认结果窗口大小的限制。

另外,你也可以通过更改Elasticsearch的索引级别设置来增加结果窗口大小限制。你可以通过设置"index.max_result_window"参数来调整结果窗口大小限制。但是,这种方法并不推荐,因为它可能会导致Elasticsearch性能下降,特别是在处理大量数据时。

总之,建议你使用scroll API来检索大量的数据,以避免超出默认结果窗口大小限制。

原代码:

python 复制代码
def main():
for i in range(0, int(allapge(index) / 10) + 2):
	try:
        res = es_yt.search(index=index, body=search_body(i))
        list_es = res['hits']['hits']
        s = helpers.bulk(es_ebscn, list_es)
        print('已完成', i)
        print(s)
    except Exception as e:
        print(e)

使用scroll 新代码:

python 复制代码
def main():
    scroll_time = '2m'  # 滚动查询的保持时间
    page_size = 1000  # 每个滚动请求返回的文档数

    res = es_yt.search(index=index, body=search_body(0), scroll=scroll_time, size=page_size)
    scroll_id = res['_scroll_id']
    scroll_size = res['hits']['total']
    print('scroll_size', scroll_size)

    while (scroll_size > 0):

        list_es = res['hits']['hits']
        print(list_es[0:1])
        if list_es:
            s = helpers.bulk(es_ebscn, list_es)
            print('scroll_size', scroll_size)
            print(s)
            res = es_yt.scroll(scroll_id=scroll_id, scroll=scroll_time)
        else:
            print('结束')
            break

    es_yt.clear_scroll(scroll_id=scroll_id)
相关推荐
测试人社区-浩辰19 分钟前
AI与区块链结合的测试验证方法
大数据·人工智能·分布式·后端·opencv·自动化·区块链
AI营销干货站30 分钟前
原圈科技:决胜未来的金融AI市场分析实战教程
大数据·人工智能
kicikng1 小时前
智能体来了(西南总部)完整拆解:AI Agent 指挥官 + AI调度官架构图
大数据·人工智能·多智能体系统·ai agent指挥官·ai调度官
liliangcsdn2 小时前
RL中GAE的计算过程详解
大数据·人工智能·算法
shjita2 小时前
mapreduce多文件的处理手法
大数据·mapreduce
AdMergeX3 小时前
前沿观察 | “死了么”爆火背后:洞察年轻人情绪刚需,重构应用增长新逻辑
大数据·广告saas·流量变现
雨大王5123 小时前
国内外工业AI原生企业对比分析与实战案例解读
大数据
开源能源管理系统4 小时前
MyEMS开源能源管理系统:赋能石膏制品制造业绿色低碳转型与降本增效
大数据·开源·能源·能源管理系统·石膏
得赢科技4 小时前
2025年GEO营销应用白皮书 - 服务业区域推广深度剖析
大数据·人工智能
GIS数据转换器4 小时前
基于GIS的宠物救助服务平台
大数据·人工智能·科技·机器学习·无人机·智慧城市·宠物