ZKP6.3 Discrete-log-based Polynomial Commitments (Bulletproofs)

ZKP学习笔记

ZK-Learning MOOC课程笔记

Lecture 6: Discrete-log-based Polynomial Commitments (Yupeng Zhang)

6.3 Bulletproofs and other schemes based on discrete-log

  • KZG:

    • Pros:
      • Commitment and proof size: O(1), 1 group element
      • Verifier time: O(1) pairing
    • Cons: trusted setup
  • Bulletproofs [BCCGP'16, BBBPWM'18]

  • Transparent setup: sample random g 0 , g 1 , g 2 , . . . , g d g_0, g_1, g_2, ..., g_d g0,g1,g2,...,gd in G G G

  • High-level idea

    • Example: 3-degree polynomial

    • Degree reduction: 3 degree -> 1 degree -> constant degree

    • Cross term to commit L and R

    • Similar with FFT

  • Correctness

  • Eval and Verify

  • Properties of Bulletproofs

    • Keygen: O(d), transparent setup!
    • Commit: O(d) group exponentiations, O(1) commitment size
    • Eval: O(d) group exponentiations (non-interactive via Fiat Shamir)
    • Proof size: O(log d)
    • Verifier time: O(d)
  • Other improvement

    • Hyrax [Wahby-Tzialla-shelat-Thaler-Walfish'18]
      • Improves the verifier time to O(d) by representing the coefficients as a 2-D matrix
      • Proof size: O( d \sqrt{d} d )
    • Dory [Lee'2021]
      • Base on pairing
      • Improving verifier time to O(log d)
      • Key idea: delegating the structured verifier computation to the prover using inner pairing product arguments [BMMTV'2021]
      • Also improves the prover time to O( d \sqrt{d} d )exponentiations plus O(d) field operations
    • Dark [Bünz-Fisch-Szepieniec'20]
      • Based on group of unknown order
      • Achieves O(log d) proof size and verifier time
        • Delegate some part of verifier to the prover
  • Summary

相关推荐
一棵开花的树,枝芽无限靠近你18 分钟前
【PPTist】表格功能
前端·笔记·学习·编辑器·ppt·pptist
yuwinter1 小时前
鸿蒙HarmonyOS学习笔记(8)
笔记·学习
1101 11013 小时前
STM32-笔记12-实现SysTick模拟多线程流水灯
笔记·stm32·嵌入式硬件
美式小田3 小时前
Cadence学习笔记 12 PCB初始化设置
笔记·嵌入式硬件·学习·cadence
kiritio10245133 小时前
kipotix4靶机实战
笔记·安全
席万里3 小时前
【MySQL学习笔记】关于索引
笔记·学习·mysql
bohu834 小时前
sentinel学习笔记8-系统自适应与黑白名单限流
笔记·sentinel·系统自适应·authorityslot·paramflowslot
滴_咕噜咕噜4 小时前
学习笔记(prism--视频【WPF-prism核心教程】)--待更新
笔记·学习·wpf
Pandaconda8 小时前
【Golang 面试题】每日 3 题(六)
开发语言·笔记·后端·面试·职场和发展·golang·go
2301_815389378 小时前
【笔记】linux虚拟机与windows的文件共享之Samba服务基本配置
linux·运维·笔记