Python 利用pandas和matplotlib绘制饼图

这段代码使用了Pandas和Matplotlib库来绘制店铺销售数量占比的饼图。通过读取Excel文件中的数据,对店铺名称进行聚合并按销售数量降序排列,然后使用Matplotlib绘制饼图展示销售数量占比情况。

导入必要的库

复制代码
import pandas as pd
import matplotlib.pyplot as plt

在这个步骤中,我们导入了两个必要的库:pandas用于数据处理,matplotlib.pyplot用于绘图。

设置中文字体

复制代码
plt.rcParams['font.family'] = ['SimHei']

这段代码指定中文字体为黑体,以支持中文字符集。

读取数据

复制代码
data = pd.read_excel('C:\\Users\Admin\\Desktop\\数据核对\\新建 XLSX 工作表.xlsx')

这段代码从指定路径的Excel文件中读取数据,并将数据存储在data变量中。

聚合数据

复制代码
aggregated_data = data.groupby('店铺名称')['销售数量'].sum()

这段代码根据店铺名称对销售数量进行聚合,并将结果存储在aggregated_data变量中。

排序数据

复制代码
aggregated_data = aggregated_data.sort_values(ascending=False)

这段代码对聚合后的数据按销售数量进行降序排序。

绘制饼图

复制代码
plt.pie(aggregated_data, labels=aggregated_data.index, autopct='%.2f%%', startangle=90,
        wedgeprops={'linewidth': 1, 'edgecolor': 'white'}, pctdistance=0.85)

这段代码使用plt.pie函数绘制饼图。传入的参数包括聚合后的销售数量数据和店铺名称,以及一些设置如起始角度、扇形边框样式和百分比标签等。

设置图表标题和图例

复制代码
plt.title('店铺销售数量占比')
plt.legend(loc='best')

这段代码使用plt.title函数设置图表标题,并使用plt.legend函数添加图例。

隐藏饼图中间的白色圆圈

复制代码
plt.gca().set_aspect('equal')
plt.tight_layout()

这段代码使用plt.gca().set_aspect('equal')将饼图设置为正圆形,并使用plt.tight_layout自动调整图表布局。

显示图表

复制代码
plt.show()

这段代码显示绘制好的图表。

完整代码如下:

复制代码
import pandas as pd
import matplotlib.pyplot as plt

plt.rcParams['font.family'] = ['SimHei']  # 指定中文字体为黑体

# 从Excel文件中读取数据
data = pd.read_excel('C:\\Users\Admin\\Desktop\\数据核对\\新建 XLSX 工作表.xlsx')

# 根据店铺名称聚合销售数量
aggregated_data = data.groupby('店铺名称')['销售数量'].sum()

# 按销售数量降序排列
aggregated_data = aggregated_data.sort_values(ascending=False)

# 绘制饼图
plt.pie(aggregated_data, labels=aggregated_data.index, autopct='%.2f%%', startangle=90,
        wedgeprops={'linewidth': 1, 'edgecolor': 'white'},pctdistance=0.85)  # 设置起始角度和扇形边框样式

# 设置图表标题和图例
plt.title('店铺销售数量占比')
plt.legend(loc='best')

# 隐藏饼图中间的白色圆圈
plt.gca().set_aspect('equal')  # 使饼图为正圆形
plt.tight_layout()  # 自动调整图表布局

# 显示图表
plt.show() 
相关推荐
人工智能训练3 小时前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略
运维·前端·人工智能·python·ai编程·cuda·vllm
yaoming1683 小时前
python性能优化方案研究
python·性能优化
码云数智-大飞4 小时前
使用 Python 高效提取 PDF 中的表格数据并导出为 TXT 或 Excel
python
biuyyyxxx6 小时前
Python自动化办公学习笔记(一) 工具安装&教程
笔记·python·学习·自动化
极客数模6 小时前
【2026美赛赛题初步翻译F题】2026_ICM_Problem_F
大数据·c语言·python·数学建模·matlab
小鸡吃米…7 小时前
机器学习中的代价函数
人工智能·python·机器学习
Li emily8 小时前
如何通过外汇API平台快速实现实时数据接入?
开发语言·python·api·fastapi·美股
m0_561359679 小时前
掌握Python魔法方法(Magic Methods)
jvm·数据库·python
Ulyanov9 小时前
顶层设计——单脉冲雷达仿真器的灵魂蓝图
python·算法·pyside·仿真系统·单脉冲
2401_838472519 小时前
使用Python进行图像识别:CNN卷积神经网络实战
jvm·数据库·python