Large Search Model: Redefining Search Stack in the Era of LLMs

本文是LLM系列文章,针对《Large Search Model: Redefining Search Stack in the Era of LLMs》的翻译。

大型搜索模型:LLM时代的搜索堆栈重新定义

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 大搜索模型](#3 大搜索模型)
  • [4 概念验证实验](#4 概念验证实验)
  • [5 结论](#5 结论)

摘要

现代搜索引擎建立在一堆不同的组件之上,包括查询理解、检索、多级排名和问答等。这些组件通常是独立优化和部署的。在本文中,我们引入了一个新的概念框架,称为大型搜索模型,该框架通过将搜索任务与一个大型语言模型(LLM)统一来重新定义传统的搜索堆栈。所有任务都被公式化为自回归文本生成问题,允许通过使用自然语言提示来定制任务。该框架利用了LLM强大的语言理解和推理能力,在简化现有繁琐搜索堆栈的同时,提供了提高搜索结果质量的潜力。为了证实该框架的可行性,我们进行了一系列概念验证实验,并讨论了在现实世界的搜索系统中实现该方法的潜在挑战。

1 引言

2 相关工作

3 大搜索模型

4 概念验证实验

5 结论

本文引入了大型搜索模型框架来重新定义LLM时代搜索系统的技术堆栈。我们认为,LLM的独特特性允许对各种IR任务采用统一的建模方法,并提供改进的泛化能力,而不是微调和部署许多特定于任务的小型编码器-解码器或编码器模型。除了该框架的巨大潜力外,我们还讨论了一些需要进一步研究的新挑战,如高推理成本、长上下文建模和潜在的错位风险等。为了证明我们框架的可行性,我们进行了概念验证实验,尽管需要更大规模的评估来进行更全面的评估。

虽然现代搜索引擎在信息访问的民主化方面发挥了重要作用,但建立一个强大的搜索系统需要跨多个组件进行大量的工程工作,而且在许多情况下搜索结果仍然不令人满意。我们相信LLM的不断发展将为信息检索领域带来新的创新浪潮,我们希望我们的工作能够激励人们朝着这个方向进行进一步的研究。

相关推荐
居7然1 天前
ChatGPT是怎么学会接龙的?
深度学习·语言模型·chatgpt·性能优化·transformer
laplace01231 天前
# 第六章 agent框架开发实践 - 学习笔记
人工智能·笔记·学习·语言模型·agent
空中楼阁,梦幻泡影1 天前
LoRA 详细解析,使用LoRA 方式对模型进行微调详细操作指南
运维·服务器·人工智能·机器学习·语言模型
CCPC不拿奖不改名1 天前
循环神经网络RNN:整数索引→稠密向量(嵌入层 / Embedding)详解
人工智能·python·rnn·深度学习·神经网络·自然语言处理·embedding
大模型最新论文速读1 天前
字节跳动 Seed: 用“分子结构”对思维建模
论文阅读·人工智能·深度学习·机器学习·自然语言处理
Maddie_Mo1 天前
智能体设计模式 第一章:提示链
人工智能·python·语言模型·rag
AI浩1 天前
DeepSeek-R1:通过强化学习激励大语言模型的推理能力
人工智能·语言模型·自然语言处理
JeffDingAI2 天前
【Datawhale学习笔记】NLP 概述
笔记·学习·自然语言处理
Loo国昌2 天前
【LangChain1.0】第一篇:基础认知
后端·python·算法·语言模型·prompt
CCPC不拿奖不改名2 天前
“Token→整数索引” 的完整实现步骤
人工智能·python·rnn·神经网络·自然语言处理·token·josn