Large Search Model: Redefining Search Stack in the Era of LLMs

本文是LLM系列文章,针对《Large Search Model: Redefining Search Stack in the Era of LLMs》的翻译。

大型搜索模型:LLM时代的搜索堆栈重新定义

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 大搜索模型](#3 大搜索模型)
  • [4 概念验证实验](#4 概念验证实验)
  • [5 结论](#5 结论)

摘要

现代搜索引擎建立在一堆不同的组件之上,包括查询理解、检索、多级排名和问答等。这些组件通常是独立优化和部署的。在本文中,我们引入了一个新的概念框架,称为大型搜索模型,该框架通过将搜索任务与一个大型语言模型(LLM)统一来重新定义传统的搜索堆栈。所有任务都被公式化为自回归文本生成问题,允许通过使用自然语言提示来定制任务。该框架利用了LLM强大的语言理解和推理能力,在简化现有繁琐搜索堆栈的同时,提供了提高搜索结果质量的潜力。为了证实该框架的可行性,我们进行了一系列概念验证实验,并讨论了在现实世界的搜索系统中实现该方法的潜在挑战。

1 引言

2 相关工作

3 大搜索模型

4 概念验证实验

5 结论

本文引入了大型搜索模型框架来重新定义LLM时代搜索系统的技术堆栈。我们认为,LLM的独特特性允许对各种IR任务采用统一的建模方法,并提供改进的泛化能力,而不是微调和部署许多特定于任务的小型编码器-解码器或编码器模型。除了该框架的巨大潜力外,我们还讨论了一些需要进一步研究的新挑战,如高推理成本、长上下文建模和潜在的错位风险等。为了证明我们框架的可行性,我们进行了概念验证实验,尽管需要更大规模的评估来进行更全面的评估。

虽然现代搜索引擎在信息访问的民主化方面发挥了重要作用,但建立一个强大的搜索系统需要跨多个组件进行大量的工程工作,而且在许多情况下搜索结果仍然不令人满意。我们相信LLM的不断发展将为信息检索领域带来新的创新浪潮,我们希望我们的工作能够激励人们朝着这个方向进行进一步的研究。

相关推荐
阿杰学AI16 分钟前
AI核心知识52——大语言模型之Model Quantization(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·模型量化·ai-native
阿杰学AI20 分钟前
AI核心知识51——大语言模型之LLM Inference(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·模型推理·大语言模型推理·llm inference
阿正的梦工坊1 小时前
RLVE:通过自适应可验证环境扩展语言模型的强化学习
人工智能·深度学习·语言模型
FF-Studio1 小时前
解决 NVIDIA RTX 50 系列 (sm_120) 架构下的 PyTorch 与 Unsloth 依赖冲突
pytorch·自然语言处理·cuda·unsloth·rtx 50 series
semantist@语校2 小时前
第五十四篇|从事实字段到推理边界:名古屋国际外语学院Prompt生成中的过度推断防御设计
大数据·linux·服务器·人工智能·百度·语言模型·prompt
努力毕业的小土博^_^4 小时前
【AI课程领学】基于SmolVLM2与Qwen3的多模态模型拼接实践:从零构建视觉语言模型(一)
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理
Elastic 中国社区官方博客5 小时前
在 Google MCP Toolbox for Databases 中引入 Elasticsearch 支持
大数据·人工智能·elasticsearch·搜索引擎·ai·语言模型·全文检索
fishfuck5 小时前
MMEvol: Empowering Multimodal Large Language Models with Evol-Instruct
人工智能·语言模型·自然语言处理
阿正的梦工坊15 小时前
ProRL:延长强化学习训练,扩展大语言模型推理边界——NeurIPS 2025论文解读
人工智能·语言模型·自然语言处理
LiYingL17 小时前
针对大规模语言模型的离群值安全预训练创新,可防止离群值并保护量化准确性
人工智能·机器学习·语言模型