Kafka - 3.x 副本不完全指北

文章目录


kafka 副本的基本信息

参数名称 描述
kafka副本作用 提高数据可靠性
kafka副本个数 默认1个,生产环境中一般配置为2个,保证数据可靠性;但是过多的副本会增加磁盘存储空间、增加网络数据传输、降低kafka效率。
kafka副本角色 副本角色分为Leader和Follower。kafka生产者只会把数据发送到Leader,follower会主动从Leader上同步数据。
kafka中的AR 是所有副本的统称(Assigned Repllicas),AR = ISR + OSR
ISR 表示和Leader保持同步(默认30s)的follower集合。
OSR 表示Follower与Leader副本同步时,延迟过多的副本。

Leader选举过程

Kafka Controller

kafka集群中有一个broker的Controller会被选举为Controller Leader,负责管理集群broker的上下线、所有的topic的分区副本分配和Leader选举等工作。

Controller的信息同步工作是依赖于Zookeeper的。


kafka 分区副本Leader的选举流程

Kafka是一个分布式消息系统,具有分区和副本的概念,以确保高可用性和容错性。在Kafka中,每个分区都有一个领导者(Leader)和零个或多个副本(Replicas)。当分区的领导者(Leader)失败时,会触发新的领导者选举过程,确保分区的可用性。

以下是Kafka分区领导者选举的一般流程:

  1. 原始领导者故障:当Kafka集群中分区的当前领导者故障,或者由于某种原因无法提供服务时,领导者选举会被触发。

  2. 副本提名:每个分区的副本都有可能成为新的领导者。首先,副本需要"提名"自己作为新的领导者。这个提名会通过ZooKeeper或最新的KRaft元数据管理器(在Kafka 2.8.0及更高版本中引入)来完成。

  3. 提名标准:副本提名自己的标准通常包括以下因素:

    • 副本是否具备最新的数据(即最高的日志段offset)。
    • 副本的健康状态,例如是否在线、可用性等。
    • 副本的副本同步延迟。
  4. 提名协调:Kafka通过ZooKeeper或KRaft元数据管理器来协调各个副本的提名过程。这些管理器会比较各个提名并选择一个新的领导者。

  5. 提名通知:一旦新的领导者被选出,Kafka会通知所有副本,将新领导者的ID分发给它们。

  6. 新领导者选举完成:一旦新领导者被选出并通知其他副本,分区将有一个新的领导者。客户端请求将路由到新领导者,确保消息的读写操作可以继续。

需要注意的是,Kafka的分区领导者选举是一种自愿的过程,只有当当前领导者无法提供服务时,才会触发这一过程。这有助于确保Kafka的高可用性和容错性,因为在任何时刻都有多个副本可用以提供数据服务。


实际演示

① 查看first的详细信息,注意观察副本分布情况

bash 复制代码
[xxx@hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server hadoop102:9092 --describe --topic first
Topic: first    TopicId: aUFTM5wES7eSBiuSKT0UpA PartitionCount: 3       ReplicationFactor: 3    Configs: segment.bytes=1073741824
        Topic: first    Partition: 0    Leader: 102     Replicas: 102,104,103   Isr: 102,104,103
        Topic: first    Partition: 1    Leader: 103     Replicas: 103,102,104   Isr: 103,102,104
        Topic: first    Partition: 2    Leader: 104     Replicas: 104,103,102   Isr: 104,103,102

② 停掉hadoop103上的kafka进程

bash 复制代码
[xxx@hadoop103 kafka]$ bin/kafka-server-stop.sh

③ 再次查看first的相信信息,观察副本分布

bash 复制代码
[xxx@hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server hadoop102:9092 --describe --topic first
Topic: first    TopicId: aUFTM5wES7eSBiuSKT0UpA PartitionCount: 3       ReplicationFactor: 3    Configs: segment.bytes=1073741824
        Topic: first    Partition: 0    Leader: 102     Replicas: 102,104,103   Isr: 102,104
        Topic: first    Partition: 1    Leader: 102     Replicas: 103,102,104   Isr: 102,104
        Topic: first    Partition: 2    Leader: 104     Replicas: 104,103,102   Isr: 104,102

④ 处理分区leader分布不均匀问题

bash 复制代码
[xxx@hadoop102 kafka]$ bin/kafka-leader-election.sh --bootstrap-server hadoop102:9092 --topic first --election-type preferred --partition 0
[xxx@hadoop102 kafka]$ bin/kafka-leader-election.sh --bootstrap-server hadoop102:9092 --topic first --election-type preferred --partition 1
[xxx@hadoop102 kafka]$ bin/kafka-leader-election.sh --bootstrap-server hadoop102:9092 --topic first --election-type preferred --partition 2
[xxx@hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server hadoop102:9092 --describe --topic first
Topic: first    TopicId: aUFTM5wES7eSBiuSKT0UpA PartitionCount: 3       ReplicationFactor: 3    Configs: segment.bytes=1073741824
        Topic: first    Partition: 0    Leader: 102     Replicas: 102,104,103   Isr: 102,104,103
        Topic: first    Partition: 1    Leader: 103     Replicas: 103,102,104   Isr: 102,104,103
        Topic: first    Partition: 2    Leader: 104     Replicas: 104,103,102   Isr: 104,102,103


leader和 follower故障处理细节

follower故障处理细节(被踢-重连-追上Hw-连接成功)

follower发生故障后会被临时踢出ISR,待该follower恢复后,follower会读取本地磁盘记录的上次的HW,并将log文件高于HW的部分截取掉(HW之前每个节点都有,故安全),从HW开始向leader进行同步。等该follower的LEO大于等于该Partition的HW,即follower追上leader之后,就可以重新加入ISR了


leader故障处理细节(从ISR队列选取ar中靠前的节点选为leader,新leader短则follower"剪",反之则向leader同步)

eader发生故障之后,会从ISR中选出一个新的leader,之后,为保证多个副本之间的数据一致性,其余的follower会先将各自的log文件高于HW的部分截掉,然后从新的leader同步数据。

注意:这只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复。




相关推荐
不会飞的小龙人3 小时前
Kafka消息服务之Java工具类
java·kafka·消息队列·mq
bug404_4 小时前
分布式大语言模型服务引擎vLLM论文解读
人工智能·分布式·语言模型
lucky_syq5 小时前
Spark算子:大数据处理的魔法棒
大数据·分布式·spark
昔我往昔7 小时前
项目中分库分表的分布式ID如何生成
分布式
m0_748233648 小时前
【分布式】Hadoop完全分布式的搭建(零基础)
大数据·hadoop·分布式
roman_日积跬步-终至千里8 小时前
【分布式理论14】分布式数据库存储:分表分库、主从复制与数据扩容策略
数据库·分布式
薇晶晶9 小时前
如何安装Hadoop
大数据·hadoop·分布式
Jayden10 小时前
电商分布式场景中如何保证数据库与缓存的一致性?实战方案与Java代码详解
数据库·分布式·缓存·数据库缓存一致性
LUCIAZZZ11 小时前
从Redis实现分布式锁的问题延伸到Redisson的使用入门
java·数据库·spring boot·redis·分布式·spring cloud
易安杰12 小时前
DeepSeek 云原生分布式部署的深度实践与疑难解析—— 从零到生产级落地的全链路避坑指南
分布式·云原生