nlp之文本转向量

文章目录

代码

python 复制代码
from tensorflow.keras.preprocessing.text import Tokenizer  # 标记器(每一个词,以我们的数值做映射,)

words = ['LaoWang has a Wechat account.', 'He is not a nice person.', 'Be careful.']  # 把这句话中每一个单词,映射成我们的数值
tokenizer = Tokenizer(num_words=15)  # 上面三句话中,词的总数不超过 15 个(估算的值), num_words 设置单词的数量
tokenizer.fit_on_texts(words)
word_index = tokenizer.word_index
print(word_index, len(word_index))
# 把文本转化为序列编码
sequences = tokenizer.texts_to_sequences(words)
print(sequences)
# 文本转化为矩阵
one_hot_matrix = tokenizer.texts_to_matrix(words, mode='binary')
# 向量化是构建神经网络的第一步
print(tokenizer.word_index.keys())
print(one_hot_matrix, one_hot_matrix.shape)

代码解读

逐行解读这段代码。

python 复制代码
from tensorflow.keras.preprocessing.text import Tokenizer

tensorflow.keras.preprocessing.text模块导入Tokenizer类。Tokenizer用于文本标记,将每一个词映射为一个整数值。

python 复制代码
words = ['LaoWang has a Wechat account.', 'He is not a nice person.', 'Be careful.']

定义了一个列表words,包含三个字符串。

python 复制代码
tokenizer = Tokenizer(num_words=15)

创建一个Tokenizer对象,并设置参数num_words=15,意味着最大考虑15个单词。这不代表只有15个单词会被编码,而是在后续转换为矩阵时,只会考虑频率最高的前15个单词。

python 复制代码
tokenizer.fit_on_texts(words)

调用fit_on_texts方法让tokenizerwords列表上进行学习,从而创建一个词到整数值的映射。

python 复制代码
word_index = tokenizer.word_index

获取tokenizerword_index属性,它是一个字典,其中键是单词,值是单词对应的整数值。

python 复制代码
print(word_index, len(word_index))

{'a': 1, 'laowang': 2, 'has': 3, 'wechat': 4, 'account': 5, 'he': 6, 'is': 7, 'not': 8, 'nice': 9, 'person': 10, 'be': 11, 'careful': 12} 12

打印word_index字典和它的长度。

python 复制代码
sequences = tokenizer.texts_to_sequences(words)

调用texts_to_sequences方法将words列表中的文本转化为整数序列,保存到sequences中。

python 复制代码
print(sequences)

\[2, 3, 1, 4, 5\], \[6, 7, 8, 1, 9, 10\], \[11, 12\]

打印sequences列表。

python 复制代码
one_hot_matrix = tokenizer.texts_to_matrix(words, mode='binary')

调用texts_to_matrix方法将words列表中的文本转化为二进制矩阵,保存到one_hot_matrix中。二进制矩阵意味着,如果某个单词出现在文本中,它的位置会是1,否则是0。

python 复制代码
print(tokenizer.word_index.keys())

dict_keys(['a', 'laowang', 'has', 'wechat', 'account', 'he', 'is', 'not', 'nice', 'person', 'be', 'careful'])

打印word_index字典中所有的键(即所有的单词)。

python 复制代码
print(one_hot_matrix, one_hot_matrix.shape)

\[0. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 1. 0. 0. 0. 0. 1. 1. 1. 1. 1. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0.\]\] (3, 15)

打印one_hot_matrix和它的形状。这个矩阵的每一行对应words列表中的一个文本,每一列对应一个单词。如果文本中有该单词,则该位置的值为1,否则为0。

总结:这段代码首先定义了一个文本列表,然后使用Tokenizer类将文本转化为整数序列,最后将文本转化为二进制矩阵。这是将文本数据预处理为可以输入到神经网络的形式的常见步骤。

相关推荐
飞哥数智坊10 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三10 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯11 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet13 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算13 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心13 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar14 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai14 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI15 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear16 小时前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp