果蔬购物商城管理与推荐系统Python+Django网页界面+协同过滤推荐算法

一、介绍

果蔬购物管理与推荐系统。本系统以Python作为主要开发语言,前端通过HTML、CSS、BootStrap等框架搭建界面,后端使用Django框架作为逻辑处理,通过Ajax实现前后端的数据通信。并基于用户对商品的评分信息,采用协同过滤推荐算法,实现对当前登录用户的个性化商品推荐。 主要功能有:

  • 该系统分为普通用户和管理员两个角色
  • 普通用户登录、注册
  • 普通用户查看商品、加入购物车、购买、查看详情、发布评论、进行评分、查看购物车、个人订单、商品推荐等界面功能
  • 管理员可以对商品和用户所有信息进行管理

二、系统部分效果图片展示

三、演示视频 and 代码

视频+代码:www.yuque.com/ziwu/yygu3z...

四、协同过滤算法

协同过滤是一种常用的推荐系统算法,主要通过分析用户的历史行为数据(如评分、购买、浏览等)来预测用户可能感兴趣的项目。协同过滤算法主要有两种类型:基于用户的协同过滤(User-Based Collaborative Filtering)和基于物品的协同过滤(Item-Based Collaborative Filtering)。 基于用户的协同过滤是一种传统的推荐算法,核心思想是找到与目标用户兴趣相似的其他用户,然后推荐这些用户喜欢的项目给目标用户。这种方法认为,如果一个用户在过去喜欢了某些项目,那么他/她在未来也很有可能会喜欢相似用户喜欢的其他项目。 算法流程:

  1. 计算用户之间的相似度: 常用的相似度计算方法有余弦相似度、皮尔逊相关系数、Jaccard相似度等。
  2. 找到最相似的用户: 根据计算出的相似度,找到与目标用户最相似的前K个用户。
  3. 生成推荐列表: 基于这K个相似用户的行为记录,预测目标用户对未曾互动过的项目的评分,并推荐评分最高的N个项目。

优点:

  • 简单直观: 算法易于理解和实现。
  • 自然的解释性: 推荐的结果可以通过相似用户的行为直观解释。

下面是一个基于用户的协同过滤推荐算法的简单实现示例:

python 复制代码
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity

def user_based_collaborative_filtering(rating_matrix, user_id, k=5):
    """
    基于用户的协同过滤推荐算法
    
    :param rating_matrix: 用户-商品评分矩阵, numpy array, shape (n_users, n_items)
    :param user_id: 目标用户的id
    :param k: 要考虑的最相似的用户数量
    :return: 推荐商品的列表
    """
    # 计算用户之间的余弦相似度
    user_similarity = cosine_similarity(rating_matrix)

    # 获取目标用户的相似度向量
    target_user_similarity = user_similarity[user_id]

    # 获取最相似的k个用户的id
    similar_users = np.argsort(target_user_similarity)[-k-1:-1][::-1]

    # 推荐这些用户喜欢的商品
    # 注意:这里简单地将这些用户评分过的商品作为推荐,实际应用中可能需要加权平均或其他处理
    recommended_items = set()
    for user in similar_users:
        recommended_items = recommended_items.union(np.where(rating_matrix[user] > 0)[0])

    return list(recommended_items)

# 示例使用
rating_matrix = np.array([[4, 0, 2, 0, 1],
                          [0, 3, 0, 0, 0],
                          [1, 0, 0, 5, 1],
                          [0, 0, 0, 4, 4],
                          [0, 4, 3, 0, 0]])

user_id = 0  # 选择一个目标用户
recommended_items = user_based_collaborative_filtering(rating_matrix, user_id)
print("Recommended items:", recommended_items)

在这个示例中,rating_matrix是一个用户-商品评分矩阵,user_based_collaborative_filtering函数接受这个评分矩阵、一个目标用户的id和一个参数k,返回基于k个最相似用户的喜好生成的推荐商品列表。

相关推荐
豌豆花下猫3 分钟前
Python 3.14 新特性盘点,更新了些什么?
后端·python·ai
Python私教14 分钟前
Python函数:从基础到进阶的完整指南
java·服务器·python
aiweker28 分钟前
python数据分析(九):Pandas 分类数据(Categorical Data)处理
python·数据分析·pandas
Nina_7171 小时前
Day 15 训练
python
橙色小博2 小时前
Python中的re库详细用法与代码解析
linux·python·正则表达式·php·re
满怀10152 小时前
【库(Library)、包(Package)和模块(Module)解析】
python
zhojiew2 小时前
learning ray之ray强化学习/超参调优和数据处理
python·ai
bryant_meng3 小时前
【python】Calculate the Angle of a Triangle
开发语言·python·算法
未来之窗软件服务3 小时前
1k实现全磁盘扫描搜索——仙盟创梦IDE-智能编程 编程工具设计
ide·python·仙盟创梦ide
小白学大数据3 小时前
Python爬虫+代理IP+Header伪装:高效采集亚马逊数据
爬虫·python·tcp/ip·scrapy