果蔬购物商城管理与推荐系统Python+Django网页界面+协同过滤推荐算法

一、介绍

果蔬购物管理与推荐系统。本系统以Python作为主要开发语言,前端通过HTML、CSS、BootStrap等框架搭建界面,后端使用Django框架作为逻辑处理,通过Ajax实现前后端的数据通信。并基于用户对商品的评分信息,采用协同过滤推荐算法,实现对当前登录用户的个性化商品推荐。 主要功能有:

  • 该系统分为普通用户和管理员两个角色
  • 普通用户登录、注册
  • 普通用户查看商品、加入购物车、购买、查看详情、发布评论、进行评分、查看购物车、个人订单、商品推荐等界面功能
  • 管理员可以对商品和用户所有信息进行管理

二、系统部分效果图片展示

三、演示视频 and 代码

视频+代码:www.yuque.com/ziwu/yygu3z...

四、协同过滤算法

协同过滤是一种常用的推荐系统算法,主要通过分析用户的历史行为数据(如评分、购买、浏览等)来预测用户可能感兴趣的项目。协同过滤算法主要有两种类型:基于用户的协同过滤(User-Based Collaborative Filtering)和基于物品的协同过滤(Item-Based Collaborative Filtering)。 基于用户的协同过滤是一种传统的推荐算法,核心思想是找到与目标用户兴趣相似的其他用户,然后推荐这些用户喜欢的项目给目标用户。这种方法认为,如果一个用户在过去喜欢了某些项目,那么他/她在未来也很有可能会喜欢相似用户喜欢的其他项目。 算法流程:

  1. 计算用户之间的相似度: 常用的相似度计算方法有余弦相似度、皮尔逊相关系数、Jaccard相似度等。
  2. 找到最相似的用户: 根据计算出的相似度,找到与目标用户最相似的前K个用户。
  3. 生成推荐列表: 基于这K个相似用户的行为记录,预测目标用户对未曾互动过的项目的评分,并推荐评分最高的N个项目。

优点:

  • 简单直观: 算法易于理解和实现。
  • 自然的解释性: 推荐的结果可以通过相似用户的行为直观解释。

下面是一个基于用户的协同过滤推荐算法的简单实现示例:

python 复制代码
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity

def user_based_collaborative_filtering(rating_matrix, user_id, k=5):
    """
    基于用户的协同过滤推荐算法
    
    :param rating_matrix: 用户-商品评分矩阵, numpy array, shape (n_users, n_items)
    :param user_id: 目标用户的id
    :param k: 要考虑的最相似的用户数量
    :return: 推荐商品的列表
    """
    # 计算用户之间的余弦相似度
    user_similarity = cosine_similarity(rating_matrix)

    # 获取目标用户的相似度向量
    target_user_similarity = user_similarity[user_id]

    # 获取最相似的k个用户的id
    similar_users = np.argsort(target_user_similarity)[-k-1:-1][::-1]

    # 推荐这些用户喜欢的商品
    # 注意:这里简单地将这些用户评分过的商品作为推荐,实际应用中可能需要加权平均或其他处理
    recommended_items = set()
    for user in similar_users:
        recommended_items = recommended_items.union(np.where(rating_matrix[user] > 0)[0])

    return list(recommended_items)

# 示例使用
rating_matrix = np.array([[4, 0, 2, 0, 1],
                          [0, 3, 0, 0, 0],
                          [1, 0, 0, 5, 1],
                          [0, 0, 0, 4, 4],
                          [0, 4, 3, 0, 0]])

user_id = 0  # 选择一个目标用户
recommended_items = user_based_collaborative_filtering(rating_matrix, user_id)
print("Recommended items:", recommended_items)

在这个示例中,rating_matrix是一个用户-商品评分矩阵,user_based_collaborative_filtering函数接受这个评分矩阵、一个目标用户的id和一个参数k,返回基于k个最相似用户的喜好生成的推荐商品列表。

相关推荐
龙哥说跨境10 分钟前
如何利用指纹浏览器爬虫绕过Cloudflare的防护?
服务器·网络·python·网络爬虫
小白学大数据25 分钟前
正则表达式在Kotlin中的应用:提取图片链接
开发语言·python·selenium·正则表达式·kotlin
flashman91127 分钟前
python在word中插入图片
python·microsoft·自动化·word
菜鸟的人工智能之路30 分钟前
桑基图在医学数据分析中的更复杂应用示例
python·数据分析·健康医疗
懒大王爱吃狼2 小时前
Python教程:python枚举类定义和使用
开发语言·前端·javascript·python·python基础·python编程·python书籍
秃头佛爷3 小时前
Python学习大纲总结及注意事项
开发语言·python·学习
深度学习lover4 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
API快乐传递者5 小时前
淘宝反爬虫机制的主要手段有哪些?
爬虫·python
阡之尘埃7 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
丕羽10 小时前
【Pytorch】基本语法
人工智能·pytorch·python