Python嵌入式数据库 / 轻量级数据库 / 小型数据库介绍(SQLite、Pandas DataFrame、TinyDB)(python数据库)

文章目录

Python嵌入式数据库/轻量级数据库介绍

在构建应用程序时,数据存储是必不可少的一部分。传统的方式是使用如MySQL、PostgreSQL这样的重量级数据库。然而,这种方法需要安装和管理数据库服务器,可能会带来额外的复杂性。Python提供了多种嵌入式数据库或轻量级数据库的选择,它们可以直接集成到应用程序中,无需单独的服务器进程。

什么是嵌入式数据库/轻量级数据库?

嵌入式数据库或轻量级数据库是指那些可以直接嵌入到应用程序中的数据库,它们通常更小、更简单,易于安装和管理。对于一些简单的应用程序,特别是那些需要频繁移植或者无法承担重型数据库管理开销的项目,嵌入式数据库或轻量级数据库是一个理想的选择。

以下是Python中一些常见的嵌入式数据库/轻量级数据库库:

SQLite

SQLite是一个基于磁盘的轻量级数据库,它的所有数据都存储在单个文件中。虽然SQLite的功能比许多全功能的数据库服务器要少,但对于许多应用来说已经足够了。另外,由于SQLite的实现非常紧凑(只有几百KB),因此它特别适合嵌入式系统和小型应用。

SQLite在Python的标准库中有内置支持,可以使用sqlite3模块来访问。以下是一个简单的示例:

python 复制代码
import sqlite3

# 连接到SQLite数据库(如果不存在,则会创建一个)
conn = sqlite3.connect('example.db')

# 创建一个新表
conn.execute('''
CREATE TABLE stocks
(date text, trans text, symbol text, qty real, price real)
''')

# 插入一行数据
conn.execute("INSERT INTO stocks VALUES ('2006-01-05','BUY','RHAT',100,35.14)")

# 提交事务
conn.commit()

# 关闭连接
conn.close()

这个示例展示了如何创建一个新的SQLite数据库,创建一个新表,插入一行数据,然后提交事务。所有的操作都在同一个进程中完成,没有网络通信或其他服务器进程。

Pandas

虽然Pandas不是一个真正的数据库,但它提供了一个强大的DataFrame对象,可以方便地读取、写入和处理表格型数据。你可以把Pandas DataFrame看作是一个内存中的数据库表。

以下是一个简单的Pandas示例:

python 复制代码
import pandas as pd

# 创建一个新的DataFrame
df = pd.DataFrame({
    'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],
    'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],
    'C': np.random.randn(8),
    'D': np.random.randn(8)
})

# 按'A'和'B'列进行分组,并计算'C'列的总和
grouped = df.groupby(['A', 'B']).sum()

print(grouped)

这个示例展示了如何创建一个新的DataFrame,然后对数据进行分组和聚合操作,类似于SQL中的GROUP BY查询。尽管Pandas不能替代真正的数据库(特别是在处理大型数据集或需要持久存储时),但它提供了许多强大的数据处理功能,使得在Python中进行数据分析变得非常方便。

TinyDB

TinyDB是一个纯Python的轻量级文档数据库,它将所有数据存储在一个JSON文件中。TinyDB非常简单易用,而且由于数据以纯文本形式存储,所以可以方便地查看和编辑。

以下是一个简单的TinyDB示例:

python 复制代码
from tinydb import TinyDB, Query

# 创建/打开数据库
db = TinyDB('db.json')

# 插入数据
db.insert({'type': 'apple', 'count': 7})
db.insert({'type': 'peach', 'count': 3})

# 查询数据
Fruit = Query()
res = db.search(Fruit.type == 'apple')
print(res)  # [{'type': 'apple', 'count': 7}]

这个示例展示了如何使用TinyDB创建一个新的数据库,插入数据,然后执行查询。尽管TinyDB的功能相对较少,但它非常适合用于小型项目和简单应用。

总结

Python提供了多种嵌入式数据库或轻量级数据库的选择,使得在无需单独的服务器进程的情况下处理数据变得非常方便。这些库有各自的优点和缺点,可根据具体需求来选择合适的工具。

ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍

ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ

相关推荐
STLearner10 分钟前
VLDB 2025 | 时间序列(Time Series)论文总结(预测,异常检测,压缩,自动化等)
数据库·人工智能·深度学习·神经网络·机器学习·数据挖掘·时序数据库
17 分钟前
TIDB——TIKV——raft
数据库·分布式·tidb
Ven%21 分钟前
【AI大模型算法工程师面试题解析与技术思考】
人工智能·python·算法
天勤量化大唯粉22 分钟前
枢轴点反转策略在铜期货中的量化应用指南(附天勤量化代码)
ide·python·算法·机器学习·github·开源软件·程序员创富
不会c嘎嘎35 分钟前
MySQL 指南:全面掌握用户管理与权限控制
数据库·mysql
ShadowSmartMicros36 分钟前
java调用milvus数据库
java·数据库·milvus
Bug.ink36 分钟前
BUUCTF——WEB(2)
数据库·sql·网络安全·buuctf
Swizard1 小时前
拒绝“狗熊掰棒子”!用 EWC (Elastic Weight Consolidation) 彻底终结 AI 的灾难性遗忘
python·算法·ai·训练
Spider赵毅1 小时前
python实战 | 如何使用海外代理IP抓取Amazon黑五数据
python·tcp/ip·php
月光技术杂谈1 小时前
基于Python的网络性能分析实践:从Ping原理到自动化监控
网络·python·性能分析·ping·时延·自动化监控