USACO12OPEN Balanced Cow Subsets G(meet in the middle)

洛谷P3067 [USACO12OPEN] Balanced Cow Subsets G

题目大意

我们定义一个奶牛集合 S S S是平衡的,当且仅当满足以下两个条件:

  • S S S非空
  • S S S可以被划分为两个集合 A , B A,B A,B,满足 A A A里的奶牛产量之和等于 B B B里的牛奶产量之和

现在给定大小为 n n n的奶牛集合 S S S,询问它有多少个子集是平衡的。

1 ≤ n ≤ 20 , 1 ≤ a i ≤ 1 0 8 1\leq n\leq 20,1\leq a_i\leq 10^8 1≤n≤20,1≤ai≤108

题解

前置知识:折半搜索(meet in the middle)

我们考虑枚举 S S S的子集 S ′ S' S′,在枚举子集 S ′ S' S′中的每个子集来判断 S ′ S' S′是否平衡。每个奶牛有三种情况:不在 S S S中,在 S S S中但不在 S ′ S' S′中,在 S S S中且在 S ′ S' S′中。如果枚举每种情况的话,时间时间复杂度是 O ( 3 n ) O(3^n) O(3n)的,我们考虑优化。

我们可以用折半搜索,将所有奶牛分为两个部分。

设前一部分中划分到集合 A A A的元素的值之和为 a a a,划分到集合 B B B的元素的值之和为 b b b。

设后一部分中划分到集合 A A A的元素的值之和为 c c c,划分到集合 B B B的元素的值之和为 d d d。

那么, a + c = b + d a+c=b+d a+c=b+d,移项的 a − b = c − d a-b=c-d a−b=c−d。

我们先处理出前一部分的 a − b a-b a−b,然后对于每一个 c − d c-d c−d,在前面处理出的 a − b a-b a−b中查找与 c − d c-d c−d相等的并判断这两部分构成的集合是否是平衡的,是的话就更新答案即可。

处理前一部分和后一部分的时间复杂度都为 O ( 3 n / 2 ) O(3^{n/2}) O(3n/2),合并的时间复杂度为 O ( n 3 n ) O(n3^n) O(n3n),所以总时间复杂度为 O ( n 3 n ) O(n3^n) O(n3n)。

code

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
int n,cnt=0,ans=0,a[25],z[1<<20];
map<int,int>mp;
vector<int>v[1<<20];
void dfs1(int t,int sum,int now){
	if(t==n/2+1){
		if(!mp[sum]) mp[sum]=++cnt;
		v[mp[sum]].push_back(now);
		return;
	}
	dfs1(t+1,sum+a[t],now|(1<<t-1));
	dfs1(t+1,sum-a[t],now|(1<<t-1));
	dfs1(t+1,sum,now);
}
void dfs2(int t,int sum,int now){
	if(t==n+1){
		int tmp=mp[sum];
		if(tmp)
		for(int i=0;i<v[tmp].size();i++){
			z[v[tmp][i]|now]=1;
		}
		return;
	}
	dfs2(t+1,sum+a[t],now|(1<<t-1));
	dfs2(t+1,sum-a[t],now|(1<<t-1));
	dfs2(t+1,sum,now);
}
int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++){
		scanf("%d",&a[i]);
	}
	dfs1(1,0,0);
	dfs2(n/2+1,0,0);
	for(int i=1;i<1<<n;i++) ans+=z[i];
	printf("%d",ans);
	return 0;
}
相关推荐
Joy-鬼魅24 分钟前
Win10x64系统VS2022使用CreateFileMapping返回无效句柄
c++·createfilemap·vc·getlasterror
冷崖28 分钟前
排序--基数排序
c++·算法
淼淼76339 分钟前
Qt调度 程序
开发语言·c++·windows·qt
暗然而日章2 小时前
C++基础:Stanford CS106L学习笔记 13 特殊成员函数(SMFs)
c++·笔记·学习
云泽8082 小时前
STL容器性能探秘:stack、queue、deque的实现与CPU缓存命中率优化
java·c++·缓存
J ..2 小时前
C++ Lambda 表达式完全指南
c++
Qt程序员2 小时前
从 C++11 到 C++23:枚举的原理升级与实践
c++·c++23
CC.GG2 小时前
【C++】红黑树
java·开发语言·c++
闻缺陷则喜何志丹2 小时前
【计算几何 线性代数】仿射矩阵的秩及行列式
c++·线性代数·数学·矩阵·计算几何·行列式·仿射矩阵得秩
xu_yule3 小时前
算法基础-背包问题(01背包问题)
数据结构·c++·算法·01背包