基于AIGC构建本地知识库问答 - 文本切割粒度考量

粗粒度的文本被检索出来之后给大模型参考,大模型总会被文本中的无关信息干扰; 而细粒度的文本,检索出来的信息可能不全,缺少上下文信息,导致大模型没法给出正确答案。那么在工程中如何平衡切割文本的长短呢?

一、背景

使用AIGC构建本地知识库的其中一个步骤就是切割文本(chunk),其中一个核心的参数便是控制文本切割的粒度,这直接关系到Q&A环节的回答质量。

粗粒度的文本被检索出来之后给大模型参考,大模型总会被文本中的无关信息干扰; 而细粒度的文本,检索出来的信息可能不全,缺少上下文信息,导致大模型没法给出正确答案。那么在工程中如何平衡切割文本的长短呢?

二、基本准则

首先,以你使用的Text模型的最大上下文Token为上限,比如使用GPT-4K模型,那么文本切分粒度天然限制就不能超过4K,大模型根本就无法接受超过最大Token限制的文本内容,这是上限!那么最小是多少?为了保证检索出来的信息是完整的,确保有足够的上下文,从以往的经验来看,不能少过50-100 Token吧,不然大模型也没办法给出准确的答案。

那么再100-大模型Token上限的这个范围,如何具体确定你的切割粒度?那这个又跟你的Q&A期望相关了。如果你是做检索类型的任务,期待查询的返回是500字以内的反馈,那么400-600的Token切割数量是合适的。如果是你是做总结类型的任务,那么切片要大一点比较好,比如500,1000Token数量,这样才能归纳总结的全面准确一点。

三、其它考量

  • 考虑上下文:确保即使在细粒度的文本中,也要保存足够的上下文信息。例如,如果你选择句子为单位,那么可能考虑将前后的句子也加入,形成一个段落,以便为大模型提供上下文。

  • 采用动态窗口:在检索时,可以采用动态的窗口大小,即根据检索到的关键信息动态调整文本切割的范围。这样可以确保即使在细粒度中也能提供足够的上下文。

结合多粒度策略:在检索或其他任务中,可以考虑同时使用多个文本粒度。例如,首先使用粗粒度获取大致的范围,然后在该范围内使用细粒度进一步检索。

四、总结

基于基本准则和其它考量因素,较好的办法是"调试",通过调整切割文本粒度,验证问题得出答案的准确性,匹配适合你提供的知识域的切割粒度,即不同的知识域应该给予相匹配的文本切割粒度。

相关推荐
村口曹大爷2 小时前
《深度测评:从 GPT-5.1 到 GPT-5.2,OpenAI 到底在 Pro 模型里藏了什么黑科技?》
科技·gpt
小霖家的混江龙2 小时前
数学不好也能懂:解读 AI 经典论文《Attention is All You Need》与大模型生成原理
人工智能·llm·aigc
阿杰学AI3 小时前
AI核心知识60——大语言模型之NLP(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·nlp·aigc·agi
墨风如雪11 小时前
苹果这波开源太狠了:单张照片秒变3D,速度提升一千倍
aigc
穷人小水滴20 小时前
科幻 「备用肉身虫」 系列 (1, 2 原始设定)
aigc·科幻·未来·小说·设定
top_designer20 小时前
Illustrato:钢笔工具“退休”了?Text to Vector 零基础矢量生成流
前端·ui·aigc·交互·ux·设计师·平面设计
PetterHillWater20 小时前
阿里Z-Image图像生成模型容器部署
aigc
Java后端的Ai之路21 小时前
【AI编程工具】-CodeBuddy设置鼠标配合快捷键放大字体
人工智能·aigc·ai编程·codebuddy
智算菩萨1 天前
Gemini 3 Flash深度解析:Google推出的最新一代快速高效AI模型详尽性能评测报告
人工智能·aigc·gemini
过河卒_zh15667661 天前
网信发布2025年“人工智能+政务”规范应用案例拟入选名单公示
人工智能·大模型·aigc·政务·算法备案