识别flink的反压源头

背景

flink中最常见的问题就是反压,这种情况下我们要正确的识别导致反压的真正的源头,本文就简单看下如何正确识别反压的源头

反压的源头

首先我们必须意识到现实中轻微的反压是没有必要去优化的,因为这种情况下是由于偶尔的流量峰值,TaskManager的GC,定时任务,或者网络波动正好触发引起的,我们要优化的是那种出现持续的反压的情况

其次反压是通过JobManager通过对TaskManager进行定时采样判断TaskManager的cpu状态来确定的,如下:
JobManager对多个采样周期的数据进行平均后得到如下参数:

idleTimeMsPerSecond 每秒空闲时间

busyTimeMsPerSecond 每秒繁忙时间

backPressuredTimeMsPerSecond 每秒反压时间

这里需要注意,既然是多个周期内的平均,需要意识到我们有可能处于这种情况,比如上一个采样cpu处于反压状态,下一个采样处于空闲状态,这种情况其实也值得注意

然后反压的定义如下:

OK: 0% <= back pressured <= 10%

LOW: 10% < back pressured <= 50%

HIGH: 50% < back pressured <= 100%

重新回到正题,比如如下的图:

我们看到Source算子和Flat map算子都处于严重的反压状态,那么导致反压的算子是哪一个呢?是Source算子和Flat Map算子本身吗?答案肯定不是,上游的算子反压都是由于下游算子的消费速度跟不上造成的,所以我们需要查看反压算子的下游算子,下游算子中cpu使用100%的那个下游算子几乎就是导致反压的真正源头,比如这里的keyed aggregate→map算子,cpu使用达到了100%,这才是我们需要优化的算子

PS: flink UI中展示的每个算子的cpu空闲/忙碌/反压值是算子所有算子任务中的最大子任务的cpu空闲/最大子任务的cpu忙碌/最大子任务的cpu反压的值

相关推荐
TTBIGDATA2 小时前
【Knox编译】xmlsectool 依赖缺失问题解析
大数据·hadoop·ambari·hdp·kerberos·knox·bigtop
天远Date Lab2 小时前
Python实战:对接天远数据手机号码归属地API,实现精准用户分群与本地化运营
大数据·开发语言·python
TechubNews2 小时前
2026 年观察名单:基于 a16z「重大构想」,详解稳定币、RWA 及 AI Agent 等 8 大流行趋势
大数据·人工智能·区块链
BlockWay3 小时前
WEEX 成为 LALIGA 西甲联赛香港及台湾地区官方区域合作伙伴
大数据·人工智能·安全
培培说证4 小时前
2026 大专大数据与会计专业核心证书推荐什么
大数据
sensen_kiss5 小时前
INT303 Big Data Analysis 大数据分析 Pt.11 模型选择和词向量(Word Embeddings)
大数据·数据挖掘·数据分析
代码方舟5 小时前
Java后端实战:构建基于天远手机号码归属地核验的金融级风控模块
java·大数据·开发语言·金融
Dxy12393102166 小时前
Elasticsearch 8.13.4 条件修改 DSL 语句详解
大数据·elasticsearch·搜索引擎
Honeyeagle6 小时前
移动式多合一气体检测仪在有限空间作业中的技术实践与安全价值
大数据
YangYang9YangYan6 小时前
2026高职大数据专业的实用价值与技术前景
大数据