识别flink的反压源头

背景

flink中最常见的问题就是反压,这种情况下我们要正确的识别导致反压的真正的源头,本文就简单看下如何正确识别反压的源头

反压的源头

首先我们必须意识到现实中轻微的反压是没有必要去优化的,因为这种情况下是由于偶尔的流量峰值,TaskManager的GC,定时任务,或者网络波动正好触发引起的,我们要优化的是那种出现持续的反压的情况

其次反压是通过JobManager通过对TaskManager进行定时采样判断TaskManager的cpu状态来确定的,如下:
JobManager对多个采样周期的数据进行平均后得到如下参数:

idleTimeMsPerSecond 每秒空闲时间

busyTimeMsPerSecond 每秒繁忙时间

backPressuredTimeMsPerSecond 每秒反压时间

这里需要注意,既然是多个周期内的平均,需要意识到我们有可能处于这种情况,比如上一个采样cpu处于反压状态,下一个采样处于空闲状态,这种情况其实也值得注意

然后反压的定义如下:

OK: 0% <= back pressured <= 10%

LOW: 10% < back pressured <= 50%

HIGH: 50% < back pressured <= 100%

重新回到正题,比如如下的图:

我们看到Source算子和Flat map算子都处于严重的反压状态,那么导致反压的算子是哪一个呢?是Source算子和Flat Map算子本身吗?答案肯定不是,上游的算子反压都是由于下游算子的消费速度跟不上造成的,所以我们需要查看反压算子的下游算子,下游算子中cpu使用100%的那个下游算子几乎就是导致反压的真正源头,比如这里的keyed aggregate→map算子,cpu使用达到了100%,这才是我们需要优化的算子

PS: flink UI中展示的每个算子的cpu空闲/忙碌/反压值是算子所有算子任务中的最大子任务的cpu空闲/最大子任务的cpu忙碌/最大子任务的cpu反压的值

相关推荐
AC赳赳老秦5 分钟前
Confluence + DeepSeek:构建自动化、智能化的企业知识库文档生成与维护体系
大数据·运维·人工智能·自动化·jenkins·数据库架构·deepseek
综合热讯5 分钟前
燧光确立“数字化训练应用引领者与实战派服务商”核心定位
大数据
G皮T1 小时前
【Elasticsearch】OpenDistro Security 中 backend_roles 的设计哲学(含实战验证)
大数据·elasticsearch·kibana·权限管理·role·opensearch·backend role
Java程序员威哥1 小时前
SpringBoot2.x与3.x自动配置注册差异深度解析:从原理到迁移实战
java·大数据·开发语言·hive·hadoop·spring boot·后端
dixiuapp2 小时前
校园后勤管理平台,如何选择与规划
大数据·人工智能·工单管理系统·院校工单管理系统·物业报修系统
hg01182 小时前
埃塞俄比亚启动建设非洲最大机场
大数据
Hello.Reader2 小时前
Flink Standalone 从 0 到可运维的 Session/HA 集群模板(附配置清单)
大数据·flink
talle20212 小时前
Spark分布式计算框架介绍
大数据·分布式·spark·rdd
Leon Cheng2 小时前
工作流引擎在AI Agent中的应用
大数据·人工智能
华南首席酱油官2 小时前
精工筑净 标杆引领:净化板厂家赋能净化彩钢板行业新高度
大数据·人工智能