识别flink的反压源头

背景

flink中最常见的问题就是反压,这种情况下我们要正确的识别导致反压的真正的源头,本文就简单看下如何正确识别反压的源头

反压的源头

首先我们必须意识到现实中轻微的反压是没有必要去优化的,因为这种情况下是由于偶尔的流量峰值,TaskManager的GC,定时任务,或者网络波动正好触发引起的,我们要优化的是那种出现持续的反压的情况

其次反压是通过JobManager通过对TaskManager进行定时采样判断TaskManager的cpu状态来确定的,如下:
JobManager对多个采样周期的数据进行平均后得到如下参数:

idleTimeMsPerSecond 每秒空闲时间

busyTimeMsPerSecond 每秒繁忙时间

backPressuredTimeMsPerSecond 每秒反压时间

这里需要注意,既然是多个周期内的平均,需要意识到我们有可能处于这种情况,比如上一个采样cpu处于反压状态,下一个采样处于空闲状态,这种情况其实也值得注意

然后反压的定义如下:

OK: 0% <= back pressured <= 10%

LOW: 10% < back pressured <= 50%

HIGH: 50% < back pressured <= 100%

重新回到正题,比如如下的图:

我们看到Source算子和Flat map算子都处于严重的反压状态,那么导致反压的算子是哪一个呢?是Source算子和Flat Map算子本身吗?答案肯定不是,上游的算子反压都是由于下游算子的消费速度跟不上造成的,所以我们需要查看反压算子的下游算子,下游算子中cpu使用100%的那个下游算子几乎就是导致反压的真正源头,比如这里的keyed aggregate→map算子,cpu使用达到了100%,这才是我们需要优化的算子

PS: flink UI中展示的每个算子的cpu空闲/忙碌/反压值是算子所有算子任务中的最大子任务的cpu空闲/最大子任务的cpu忙碌/最大子任务的cpu反压的值

相关推荐
无代码专家1 小时前
设备巡检数字化解决方案:构建高效闭环管理体系
java·大数据·人工智能
天远数科1 小时前
Node.js 原生加密指南:详解 Crypto 模块对接天远银行卡黑名单接口
大数据·api
expect7g1 小时前
Paimon Branch --- 流批一体化之二
大数据·后端·flink
天远云服2 小时前
高并发风控实践:AES 加密与银行卡风险标签清洗的 Go 语言实现
大数据·api
无级程序员2 小时前
datasophon中dolpinscheduler的自定义配置common.properties不生效问题解决
大数据
珠海西格电力2 小时前
零碳园区基础架构协同规划:能源-建筑-交通-数字系统的衔接逻辑
大数据·人工智能·智慧城市·能源
weixin_537217062 小时前
AI 智能体如何利用文件系统进行上下文工程
大数据·人工智能
见识星球2 小时前
名企校招攻略
大数据·python
路边草随风2 小时前
starrocks compaction 进度问题定位
大数据·sql
档案宝档案管理3 小时前
核心功能揭秘——档案管理系统如何破解档案管理难题?
大数据·数据库·安全·档案·档案管理