识别flink的反压源头

背景

flink中最常见的问题就是反压,这种情况下我们要正确的识别导致反压的真正的源头,本文就简单看下如何正确识别反压的源头

反压的源头

首先我们必须意识到现实中轻微的反压是没有必要去优化的,因为这种情况下是由于偶尔的流量峰值,TaskManager的GC,定时任务,或者网络波动正好触发引起的,我们要优化的是那种出现持续的反压的情况

其次反压是通过JobManager通过对TaskManager进行定时采样判断TaskManager的cpu状态来确定的,如下:
JobManager对多个采样周期的数据进行平均后得到如下参数:

idleTimeMsPerSecond 每秒空闲时间

busyTimeMsPerSecond 每秒繁忙时间

backPressuredTimeMsPerSecond 每秒反压时间

这里需要注意,既然是多个周期内的平均,需要意识到我们有可能处于这种情况,比如上一个采样cpu处于反压状态,下一个采样处于空闲状态,这种情况其实也值得注意

然后反压的定义如下:

OK: 0% <= back pressured <= 10%

LOW: 10% < back pressured <= 50%

HIGH: 50% < back pressured <= 100%

重新回到正题,比如如下的图:

我们看到Source算子和Flat map算子都处于严重的反压状态,那么导致反压的算子是哪一个呢?是Source算子和Flat Map算子本身吗?答案肯定不是,上游的算子反压都是由于下游算子的消费速度跟不上造成的,所以我们需要查看反压算子的下游算子,下游算子中cpu使用100%的那个下游算子几乎就是导致反压的真正源头,比如这里的keyed aggregate→map算子,cpu使用达到了100%,这才是我们需要优化的算子

PS: flink UI中展示的每个算子的cpu空闲/忙碌/反压值是算子所有算子任务中的最大子任务的cpu空闲/最大子任务的cpu忙碌/最大子任务的cpu反压的值

相关推荐
科创致远5 分钟前
国内ESOP电子作业系统头部企业格局与科创致远技术发展历程
大数据·数据库·人工智能·嵌入式硬件·精益工程
tebukaopu14811 分钟前
es searchSourceBuilder.trackTotalHits(true);的作用
大数据·elasticsearch·搜索引擎
福客AI智能客服29 分钟前
图像识别落地:AI智能客服系统重塑电瓶车尾箱头盔电商服务
大数据·人工智能·机器人
合合技术团队31 分钟前
跨越AI落地“最后一公里”,合合信息推出多模态文本智能AI产品矩阵
大数据·人工智能
kuankeTech33 分钟前
从经验驱动到数据驱动:外贸ERP打通大宗矿业企业管理“任督二脉”
大数据·人工智能·经验分享·软件开发·erp
YangYang9YangYan34 分钟前
2026高职大数据与财务管理专业学数据分析的技术价值分析
大数据·数据挖掘·数据分析
视界先声1 小时前
破解信任困境 山东悦爱度成为产后康复行业规范化标杆
大数据
鸿乃江边鸟1 小时前
Spark datafusion comet向量化插件CometPlugin
大数据·spark·native
牛客企业服务2 小时前
牛客CEO叶向宇:从AI工具迈向AI Agent,构建人机协作新关系
大数据·人工智能
Ydwlcloud2 小时前
个人博客与内容站部署在AWS:2026年的理性选择与更优策略
大数据·服务器·人工智能·云计算·aws