识别flink的反压源头

背景

flink中最常见的问题就是反压,这种情况下我们要正确的识别导致反压的真正的源头,本文就简单看下如何正确识别反压的源头

反压的源头

首先我们必须意识到现实中轻微的反压是没有必要去优化的,因为这种情况下是由于偶尔的流量峰值,TaskManager的GC,定时任务,或者网络波动正好触发引起的,我们要优化的是那种出现持续的反压的情况

其次反压是通过JobManager通过对TaskManager进行定时采样判断TaskManager的cpu状态来确定的,如下:
JobManager对多个采样周期的数据进行平均后得到如下参数:

idleTimeMsPerSecond 每秒空闲时间

busyTimeMsPerSecond 每秒繁忙时间

backPressuredTimeMsPerSecond 每秒反压时间

这里需要注意,既然是多个周期内的平均,需要意识到我们有可能处于这种情况,比如上一个采样cpu处于反压状态,下一个采样处于空闲状态,这种情况其实也值得注意

然后反压的定义如下:

OK: 0% <= back pressured <= 10%

LOW: 10% < back pressured <= 50%

HIGH: 50% < back pressured <= 100%

重新回到正题,比如如下的图:

我们看到Source算子和Flat map算子都处于严重的反压状态,那么导致反压的算子是哪一个呢?是Source算子和Flat Map算子本身吗?答案肯定不是,上游的算子反压都是由于下游算子的消费速度跟不上造成的,所以我们需要查看反压算子的下游算子,下游算子中cpu使用100%的那个下游算子几乎就是导致反压的真正源头,比如这里的keyed aggregate→map算子,cpu使用达到了100%,这才是我们需要优化的算子

PS: flink UI中展示的每个算子的cpu空闲/忙碌/反压值是算子所有算子任务中的最大子任务的cpu空闲/最大子任务的cpu忙碌/最大子任务的cpu反压的值

相关推荐
KJYHS7 小时前
亚马逊新手运营:AI 找竞品实操指南
大数据·人工智能
萤丰信息8 小时前
数智重构生态:智慧园区引领城市高质量发展新范式
java·大数据·人工智能·安全·智慧城市
叮咚侠8 小时前
Ubuntu 24.04.3 LTS系统中Elasticsearch 8.14.0+kibana 8.14.0集群部署搭建
大数据·ubuntu·elasticsearch·搜索引擎·集群·kibana
建群新人小猿8 小时前
陀螺匠企业助手 运行环境
java·大数据·人工智能·docker·php
容智信息8 小时前
容智信息加入大模型产业联盟,Hyper Agent推动企业级智能体规模化落地
大数据·人工智能·自然语言处理·自动驾驶
xiaoshujiaa9 小时前
微服务与大数据场景下的Java面试实录:从Spring Cloud到Flink的层层拷问
大数据·spring cloud·微服务·flink·kubernetes·java面试·resilience4j
天远Date Lab9 小时前
构建金融级信贷审批系统:Java Spring Boot 集成天远借贷行为验证 API 全指南
java·大数据·spring boot·金融
-拟墨画扇-9 小时前
Git | 文件修改操作
大数据·git·gitee·github·gitcode
-拟墨画扇-9 小时前
Git | 版本控制操作
大数据·git·gitee·github
LJ97951119 小时前
智能连接:Infoseek如何重新定义媒体发布效率
大数据·人工智能