识别flink的反压源头

背景

flink中最常见的问题就是反压,这种情况下我们要正确的识别导致反压的真正的源头,本文就简单看下如何正确识别反压的源头

反压的源头

首先我们必须意识到现实中轻微的反压是没有必要去优化的,因为这种情况下是由于偶尔的流量峰值,TaskManager的GC,定时任务,或者网络波动正好触发引起的,我们要优化的是那种出现持续的反压的情况

其次反压是通过JobManager通过对TaskManager进行定时采样判断TaskManager的cpu状态来确定的,如下:
JobManager对多个采样周期的数据进行平均后得到如下参数:

idleTimeMsPerSecond 每秒空闲时间

busyTimeMsPerSecond 每秒繁忙时间

backPressuredTimeMsPerSecond 每秒反压时间

这里需要注意,既然是多个周期内的平均,需要意识到我们有可能处于这种情况,比如上一个采样cpu处于反压状态,下一个采样处于空闲状态,这种情况其实也值得注意

然后反压的定义如下:

OK: 0% <= back pressured <= 10%

LOW: 10% < back pressured <= 50%

HIGH: 50% < back pressured <= 100%

重新回到正题,比如如下的图:

我们看到Source算子和Flat map算子都处于严重的反压状态,那么导致反压的算子是哪一个呢?是Source算子和Flat Map算子本身吗?答案肯定不是,上游的算子反压都是由于下游算子的消费速度跟不上造成的,所以我们需要查看反压算子的下游算子,下游算子中cpu使用100%的那个下游算子几乎就是导致反压的真正源头,比如这里的keyed aggregate→map算子,cpu使用达到了100%,这才是我们需要优化的算子

PS: flink UI中展示的每个算子的cpu空闲/忙碌/反压值是算子所有算子任务中的最大子任务的cpu空闲/最大子任务的cpu忙碌/最大子任务的cpu反压的值

相关推荐
程序员哈基耄10 分钟前
安全高效,本地运行:全能文件格式转换工具
大数据·python·安全
数说星榆18114 分钟前
小型工厂工艺流程图制作_在线设计装配/焊接/冲压工艺流程模板
大数据·论文阅读·人工智能·流程图·论文笔记
历程里程碑38 分钟前
双指针2--盛水最多的容器
大数据·数据结构·算法·leetcode·elasticsearch·搜索引擎·散列表
川西胖墩墩1 小时前
智能交通管理:实时路况优化与拥堵预测
大数据
重生之绝世牛码1 小时前
Linux软件安装 —— PostgreSQL高可用集群安装(postgreSQL + repmgr主从复制 + keepalived故障转移)
大数据·linux·运维·数据库·postgresql·软件安装·postgresql高可用
电商API&Tina1 小时前
电商API接口的应用与简要分析||taobao|jd|微店
大数据·python·数据分析·json
不会c+3 小时前
Elasticsearch入门
大数据·elasticsearch·搜索引擎
数据知道3 小时前
PostgreSQL 实战:一文掌握如何优雅的进行递归查询?
大数据·数据库·postgresql
Hello.Reader3 小时前
Flink 2.2 Docker 部署Session / Application / SQL Client 一把梭(含 Compose、插件、连接器与踩坑点)
sql·docker·flink
重生之绝世牛码3 小时前
Linux软件安装 —— ClickHouse单节点安装(rpm安装、tar安装两种安装方式)
大数据·linux·运维·数据库·clickhouse·软件安装·clickhouse单节点