python分类指标评测

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import roc_curve, auc, confusion_matrix, \
    precision_recall_curve, average_precision_score
from sklearn.metrics import roc_auc_score
# 生成假数据
y_true = [0, 1, 0, 1, 1, 0]
y_pred = [0.2, 0.6, 0.3, 0.8, 0.2, 0.1]

# 计算AUC
fpr, tpr, thresholds = roc_curve(y_true, y_pred)
roc_auc = auc(fpr, tpr)

# 绘制ROC曲线
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b', label='AUC = %0.2f' % roc_auc)
plt.legend(loc='lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([-0.1, 1.1])
plt.ylim([-0.1, 1.1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()

# 计算混淆矩阵
tn, fp, fn, tp = confusion_matrix(y_true, [1 if i > 0.5 else 0 for i in y_pred]).ravel()

# 绘制混淆矩阵图
labels = ['True Negative', 'False Positive', 'False Negative', 'True Positive']
categories = ['Negative', 'Positive']
sns.heatmap([[tn, fp], [fn, tp]], annot=True, fmt='d', xticklabels=categories, yticklabels=categories, cmap="YlGnBu")
plt.xlabel('Predicted Label')
plt.ylabel('True Label')
plt.title('Confusion Matrix')
plt.show()

# 计算Precision-Recall曲线和AUC
precision, recall, thresholds = precision_recall_curve(y_true, y_pred)
average_precision = average_precision_score(y_true, y_pred)

# 绘制Precision-Recall曲线图
plt.step(recall, precision, color='b', alpha=0.2,
         where='post')
plt.fill_between(recall, precision, step='post', alpha=0.2,
                 color='b')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.title('Precision-Recall curve: AP={0:0.2f}'.format(average_precision))
plt.show()

plt.show()
相关推荐
你怎么知道我是队长6 小时前
C语言---枚举变量
c语言·开发语言
李慕婉学姐6 小时前
【开题答辩过程】以《基于JAVA的校园即时配送系统的设计与实现》为例,不知道这个选题怎么做的,不知道这个选题怎么开题答辩的可以进来看看
java·开发语言·数据库
吃茄子的猫6 小时前
quecpython中&的具体含义和使用场景
开发语言·python
じ☆冷颜〃6 小时前
黎曼几何驱动的算法与系统设计:理论、实践与跨领域应用
笔记·python·深度学习·网络协议·算法·机器学习
云栖梦泽6 小时前
易语言中小微企业Windows桌面端IoT监控与控制
开发语言
数据大魔方6 小时前
【期货量化实战】日内动量策略:顺势而为的短线交易法(Python源码)
开发语言·数据库·python·mysql·算法·github·程序员创富
APIshop6 小时前
Python 爬虫获取 item_get_web —— 淘宝商品 SKU、详情图、券后价全流程解析
前端·爬虫·python
风送雨6 小时前
FastMCP 2.0 服务端开发教学文档(下)
服务器·前端·网络·人工智能·python·ai
效率客栈老秦7 小时前
Python Trae提示词开发实战(8):数据采集与清洗一体化方案让效率提升10倍
人工智能·python·ai·提示词·trae
哈里谢顿7 小时前
一条 Python 语句在 C 扩展里到底怎么跑
python