【考研数学】概率论与数理统计 —— 第七章 | 参数估计(2,参数估计量的评价、正态总体的区间估计)

文章目录


一、参数估计量的评价标准

1.1 无偏性

设 X X X 为总体, ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots ,X_n) (X1,X2,⋯,Xn) 为来自总体 X X X 的简单随机样本, θ \theta θ 为未知参数,设 θ ^ = φ ( X 1 , X 2 , ⋯   , X n ) \widehat{\theta}=\varphi(X_1,X_2,\cdots,X_n) θ =φ(X1,X2,⋯,Xn) 为参数 θ \theta θ 的一个点估计量,若 E ( θ ^ ) = θ E(\widehat{\theta})=\theta E(θ )=θ ,称 θ ^ \widehat{\theta} θ 为参数 θ \theta θ 的无偏估计量。

【例】 设总体 X X X 的密度函数为 f ( x ) = { 2 x / θ 2 0 < x < θ 0 e l s e f(x)=\begin{cases} 2x/\theta^2 & 0<x<\theta \\ 0 &else\end{cases} f(x)={2x/θ200<x<θelse ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,⋯,Xn) 为来自总体 X X X 的简单随机样本。

(1)求参数 θ \theta θ 的矩估计量;(2)求参数 θ \theta θ 的最大似然估计量;(3)矩估计量是否为无偏估计。

解: (1) E ( X ) = ∫ − ∞ ∞ x f ( x ) d x = 2 θ / 3 E(X)=\int_{-\infty}^\infty xf(x)dx=2\theta/3 E(X)=∫−∞∞xf(x)dx=2θ/3 ,令 2 θ / 3 = X ‾ 2\theta/3=\overline{X} 2θ/3=X ,则可得矩估计量 θ ^ = 3 X ‾ 2 . \widehat{\theta}=\frac{3\overline{X}}{2}. θ =23X. (2)构造似然函数 L ( θ ) = f ( x 1 ) f ( x 2 ) ⋯ f ( x n ) = 2 n θ 2 n x 1 x 2 ⋯ x n ( 0 < x i < θ , i = 1 , 2 , ⋯   , n ) . d ln ⁡ L d θ = − 2 n θ < 0. L(\theta)=f(x_1)f(x_2)\cdots f(x_n)=\frac{2^n}{\theta^{2n}}x_1x_2\cdots x_n(0<x_i<\theta,i=1,2,\cdots,n).\\ \frac{d\ln L}{d\theta}=-\frac{2n}{\theta}<0. L(θ)=f(x1)f(x2)⋯f(xn)=θ2n2nx1x2⋯xn(0<xi<θ,i=1,2,⋯,n).dθdlnL=−θ2n<0. 可知 L ( θ ) L(\theta) L(θ) 是 θ \theta θ 的减函数,因此最大似然估计量 θ ^ = max ⁡ { X 1 , X 2 , ⋯   , X n } \widehat{\theta}=\max\{X_1,X_2,\cdots,X_n\} θ =max{X1,X2,⋯,Xn} 。

(3) E ( θ ^ ) = 3 / 2 ⋅ E ( X ‾ ) = 3 / 2 ⋅ 2 θ / 3 = θ E(\widehat{\theta})=3/2\cdot E(\overline{X})=3/2\cdot2\theta/3=\theta E(θ )=3/2⋅E(X)=3/2⋅2θ/3=θ ,故是无偏估计量。

1.2 有效性

设 X X X 为总体, ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots ,X_n) (X1,X2,⋯,Xn) 为来自总体 X X X 的简单随机样本, θ \theta θ 为未知参数,设 θ ^ 1 , θ ^ 2 \widehat{\theta}_1,\widehat{\theta}_2 θ 1,θ 2 都是参数 θ \theta θ 的无偏估计量,若 D ( θ ^ 1 ) < D ( θ ^ 2 ) D(\widehat{\theta}_1)<D(\widehat{\theta}_2) D(θ 1)<D(θ 2) ,称 θ ^ 1 \widehat{\theta}_1 θ 1 为更有效的参数估计量。

1.3 一致性

设 X X X 为总体, ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots ,X_n) (X1,X2,⋯,Xn) 为来自总体 X X X 的简单随机样本, θ \theta θ 为未知参数,设 θ ^ = φ ( X 1 , X 2 , ⋯   , X n ) \widehat{\theta}=\varphi(X_1,X_2,\cdots,X_n) θ =φ(X1,X2,⋯,Xn) 为参数 θ \theta θ 的一个估计量,若对任意 ϵ > 0 \epsilon>0 ϵ>0 ,有 lim ⁡ n → ∞ P { ∣ θ ^ − θ ∣ < ϵ } = 1 \lim_{n\to\infty}P\{|\widehat{\theta}-\theta|<\epsilon\}=1 n→∞limP{∣θ −θ∣<ϵ}=1 称 θ ^ \widehat{\theta} θ 作为 θ \theta θ 的估计量具有一致性(或相合性)。


二、一个正态总体参数的双侧区间估计

前面我们所学的两种方法为点估计法,即只能得到一个值,但实际上我们并非需要那么精确,况且点估计出来也不一定好,因此我们最好是估计一个区间范围。

2.1 对参数 μ \mu μ 的双侧区间估计

设 X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma^2) X∼N(μ,σ2) 为总体, ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots ,X_n) (X1,X2,⋯,Xn) 为来自总体 X X X 的简单随机样本, 0 < α < 1 0<\alpha<1 0<α<1 ,求参数的置信度为 1 − α 1-\alpha 1−α 的双侧置信区间。

1. 参数 σ 2 \sigma^2 σ2 已知

对 X ‾ \overline{X} X 标准化为标准正态分布,令其在 − z α 2 -z_{\alpha\over 2} −z2α 和 z α 2 z_{\alpha\over 2} z2α 内的概率为 1 − α 1-\alpha 1−α,可求出置信区间为 ( X ‾ − σ n z α 2 , X ‾ + σ n z α 2 ) \bigg(\overline{X}-\frac{\sigma}{\sqrt{n}}z_{\alpha\over2},\overline{X}+\frac{\sigma}{\sqrt{n}}z_{\alpha\over2}\bigg) (X−n σz2α,X+n σz2α) 2. 参数 σ 2 \sigma^2 σ2 未知

则利用 t t t 分布,即取 X ‾ − μ S n ∼ t ( n − 1 ) \frac{\overline{X}-\mu}{\frac{S}{\sqrt{n}}}\sim t(n-1) n SX−μ∼t(n−1) 令其在 ( − t α 2 ( n − 1 ) , t α 2 ( n − 1 ) ) (-t_{\frac{\alpha}{2}}(n-1),t_{\frac{\alpha}{2}}(n-1)) (−t2α(n−1),t2α(n−1)) 的概率为 1 − α 1-\alpha 1−α ,可计算出置信区间为 ( X ‾ − S n t α 2 ( n − 1 ) , X ‾ + S n t α 2 ( n − 1 ) ) \bigg(\overline{X}-\frac{S}{\sqrt{n}}t_{\alpha\over2}(n-1),\overline{X}+\frac{S}{\sqrt{n}}t_{\alpha\over2}(n-1)\bigg) (X−n St2α(n−1),X+n St2α(n−1)) 此外还有对 σ 2 \sigma^2 σ2 的区间估计,汇总成下表:

三、一个正态总体的单侧置信区间

其实单侧也就是双侧的区间取一端,如估计 μ \mu μ 且 σ 2 \sigma^2 σ2 已知,单侧置信区间为: ( X ‾ − σ n z α 2 , + ∞ ) , ( − ∞ , X ‾ + σ n z α 2 ) \bigg(\overline{X}-\frac{\sigma}{\sqrt{n}}z_{\alpha\over2},+\infty\bigg),\bigg(-\infty,\overline{X}+\frac{\sigma}{\sqrt{n}}z_{\alpha\over2}\bigg) (X−n σz2α,+∞),(−∞,X+n σz2α) 其余以此类推。

四、两个正态总体的双侧置信区间

汇总成表:

其中 S w = ( m − 1 ) S 1 2 + ( n − 1 ) S 2 2 m + n − 2 S_w=\frac{(m-1)S_1^2+(n-1)S_2^2}{m+n-2} Sw=m+n−2(m−1)S12+(n−1)S22


写在最后

看了下大纲,对区间估计的概念和一个、两个正态总体的置信区间公式作了理解要求,后期抽时间记忆记忆。

相关推荐
点云SLAM3 天前
似然函数(Likelihood Function)和最大似然估计
算法·机器学习·概率论·数理统计·最大似然估计·似然函数·概率分布
小艳加油14 天前
R语言贝叶斯网络分析的完整体系——涵盖离散、连续、混合及动态网络等
r语言·参数估计·贝叶斯网络
Zhibang Yue21 天前
非参数统计基础1——Pearson检验
统计·概率论·数理统计
荒原之梦网1 个月前
27考研,英语,数学,政治推荐哪些线上课?
考研·考研数学·荒原之梦考研数学
oscar9992 个月前
概率论与数理统计 第七章 参数估计
概率论·参数估计
浅川.252 个月前
概率论与数理统计:期末复习梳理
概率论·数理统计
荒原之梦网2 个月前
27考研数学听谁的课比较好?
考研·考研数学·荒原之梦考研数学
RE-19013 个月前
《深入浅出统计学》学习笔记(二)
大数据·数学·概率论·统计学·数理统计·知识笔记·深入浅出
RE-19013 个月前
《深入浅出统计学》学习笔记(一)
大数据·数学·概率论·统计学·数理统计·知识笔记·深入浅出
KWTXX3 个月前
一次方的高阶无穷小 = 一次方 × 无穷小
考研数学