刷题顺序按照代码随想录建议
题目描述
英文版描述
Given the root
of a binary search tree and the lowest and highest boundaries as low
and high
, trim the tree so that all its elements lies in [low, high]
. Trimming the tree should not change the relative structure of the elements that will remain in the tree (i.e., any node's descendant should remain a descendant). It can be proven that there is a unique answer.
Return the root of the trimmed binary search tree. Note that the root may change depending on the given bounds.
Example 1:
Input: root = [1,0,2], low = 1, high = 2 Output: [1,null,2]
Example 2:
Input: root = [3,0,4,null,2,null,null,1], low = 1, high = 3 Output: [3,2,null,1]
Constraints:
- The number of nodes in the tree is in the range
[1, 10^4]
. 0 <= Node.val <= 10^4
- The value of each node in the tree is unique.
root
is guaranteed to be a valid binary search tree.0 <= low <= high <= 10^4
英文版地址
中文版描述
给你二叉搜索树的根节点 root
,同时给定最小边界low
和最大边界 high
。通过修剪二叉搜索树,使得所有节点的值在[low, high]
中。修剪树 不应该 改变保留在树中的元素的相对结构 (即,如果没有被移除,原有的父代子代关系都应当保留)。 可以证明,存在 唯一的答案 。
所以结果应当返回修剪好的二叉搜索树的新的根节点。注意,根节点可能会根据给定的边界发生改变。
示例 1:
输入: root = [1,0,2], low = 1, high = 2 输出: [1,null,2]
示例 2:
输入: root = [3,0,4,null,2,null,null,1], low = 1, high = 3 输出: [3,2,null,1]
提示:
- 树中节点数在范围
[1, 10^4]
内 0 <= Node.val <= 10^4
- 树中每个节点的值都是 唯一 的
- 题目数据保证输入是一棵有效的二叉搜索树
0 <= low <= high <= 10^4
中文版地址
解题方法
递归法
ini
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode trimBST(TreeNode root, int low, int high) {
return traversal(root, low, high);
}
private TreeNode traversal(TreeNode root, int low, int high) {
if (root == null) {
return null;
}
if (root.val > high) {
return traversal(root.left, low, high);
}
if (root.val < low) {
return traversal(root.right, low, high);
}
// 保留
if (root.val >= low && root.val <= high) {
root.left = traversal(root.left, low, high);
root.right = traversal(root.right, low, high);
}
return root;
}
}
复杂度分析
- 时间复杂度:O(n),其中 n 是二叉树的节点数,每一个节点恰好被遍历一次
- 空间复杂度:O(n),为递归过程中栈的开销,平均情况下为 O(logn),最坏情况下树呈现链状,为 O(n)