YOLOV8最简图像分类检测推理代码

安装YOLOV8

首先要去YOLOV8的官网安装库
YOLOV8官方网站

powershell 复制代码
# Install the ultralytics package from PyPI
pip install ultralytics

安装opencv

powershell 复制代码
pip install opencv-python
python 复制代码
import cv2
from ultralytics import YOLO

# Load the YOLOv8 model
model = YOLO('yolov8n.pt')

# Open the video file
video_path = 0
cap = cv2.VideoCapture(video_path)

# Loop through the video frames
while cap.isOpened():
    # Read a frame from the video
    success, frame = cap.read()

    if success:
        # Run YOLOv8 inference on the frame
        results = model(frame)

        # Visualize the results on the frame
        annotated_frame = results[0].plot()

        # Display the annotated frame
        cv2.imshow("YOLOv8 Inference", annotated_frame)

        # Break the loop if 'q' is pressed
        if cv2.waitKey(1) & 0xFF == ord("q"):
            break
    else:
        # Break the loop if the end of the video is reached
        break

# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()

更短的

python 复制代码
import cv2
from ultralytics import YOLO

# Load the YOLOv8 model
model = YOLO('yolov8n.pt')

# Open the video file
video_path = 0
cap = cv2.VideoCapture(video_path)

# Loop through the video frames
while cap.isOpened():
    # Read a frame from the video
    success, frame = cap.read()

    if success:
        # Run YOLOv8 inference on the frame
        results = model(frame, show=True)

        # Visualize the results on the frame
        # annotated_frame = results[0].plot()

        # Display the annotated frame
        # cv2.imshow("YOLOv8 Inference", annotated_frame)

        # Break the loop if 'q' is pressed
        if cv2.waitKey(1) & 0xFF == ord("q"):
            break
    else:
        # Break the loop if the end of the video is reached
        break

# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()
相关推荐
songyuc几秒前
《A Bilateral CFAR Algorithm for Ship Detection in SAR Images》译读笔记
人工智能·笔记·计算机视觉
AndrewHZ31 分钟前
【图像处理基石】提升图像通透感:从原理到实操的完整指南
图像处理·人工智能·计算机视觉·cv·对比度·动态范围·通透感
程序员霸哥哥1 小时前
从零搭建PyTorch计算机视觉模型
人工智能·pytorch·python·计算机视觉
【赫兹威客】浩哥2 小时前
基于 YOLO11+PyQt6+OpenCV 的智能水果检测系统设计与实现
人工智能·opencv·计算机视觉
Antonio9156 小时前
【图像处理】图像的基础几何变换
图像处理·人工智能·计算机视觉
智驱力人工智能8 小时前
基于视觉分析的人脸联动使用手机检测系统 智能安全管理新突破 人脸与手机行为联动检测 多模态融合人脸与手机行为分析模型
算法·安全·目标检测·计算机视觉·智能手机·视觉检测·边缘计算
qzhqbb11 小时前
神经网络 - 卷积神经网络
神经网络·计算机视觉·cnn
点云SLAM13 小时前
弱纹理图像特征匹配算法推荐汇总
人工智能·深度学习·算法·计算机视觉·机器人·slam·弱纹理图像特征匹配
王哈哈^_^14 小时前
YOLOv11视觉检测实战:安全距离测算全解析
人工智能·数码相机·算法·yolo·计算机视觉·目标跟踪·视觉检测
AI technophile14 小时前
OpenCV计算机视觉实战(29)——OpenCV DNN模块
opencv·计算机视觉·dnn