DriveLM:世界首个语言+自动驾驶全栈开源数据集,旨在借助大语言模型和海量自然语言数据集,构筑复杂场景下安全、精准、可解释的自动驾驶系统,突破现有自动驾驶推理能力上限,数据集已开源!
DriveLM提供了量化的推理能力评估标准,改变了模型的结构化推理(Structured-reasoning)或思维图(Graph of Thoughts)能力难以量化评估的现状。如下图所示,DriveLM提供了从物体识别、物体运动状态判断到物体未来运动轨迹预测、自车运动规划的完整逻辑链条,确保了整个决策过程中每一步的合理性和可解释性。
DriveLM是一个基于nuScenes自动驾驶数据集构建的、以关键帧描述+问答对(Description+Q&A)为核心的数据集。
数据集中的问答对主要可以分为三类:感知(Perception)、预测(Prediction)和规划(Planning)。感知部分着重于询问物体相对自车的位置或运动状态;预测部分询问车辆或行人的未来可能行为和状态;规划部分询问自车可以采取的行动。
整个数据集分为训练集和验证集两部分,训练集共包含697个场景,验证集包含150个场景。每个场景包含大约40帧(采样频率约为2赫兹),标注员会在其中选择4-8个关键帧进行标注。
代码地址:https://github.com/OpenDriveLab/DriveLM
项目地址:https://opendrivelab.github.io/DriveLM/
更多论文创新点加微信群:Lh1141755859
公众号:CV算法小屋