【HBZ分享】ES中的Mapping的数据类型 及 类型的特点

Mapping类型

  1. Numeric: 包括整数类型(long, integer, short, byte) 和 浮点类型(double, float)
  2. Date: 用于存储日期和时间类型
  3. Boolean:用于存储布尔类型(true, false)
  4. Binary: 用于存储二进制类型数据
  5. Array: 用于存储数组或列表类型数据
  6. Object: 用于存储复杂结构类型数据

常见并且很关键的数据类型

  1. text字段类型:

    (1). text类型主要用于全文本搜索,适合存储需要进行全文本分词的文本内容,比如文章,新闻,描述等。

    (2). text字段会对文本内容进行分词处理,将文本拆分成独立的词项进行搜索

    (3). 分词的结果会建立倒排索引,使搜索更加灵活高效

    (4). text字段在搜索时会根据分词结果进行匹配,并计算出相关得分,以便返回最佳结果

  2. keyword字段类型:

    (1). keyword类型主要用于精确匹配和聚合操作, 适合存储不需要分词的精确值,比如ID, 标签等

    (2). keyword类型的字段不会进行分词处理,而是将整一个字段作为整体进行搜索,差一个单词都搜不出来

    (3). 不能进行模糊查询

    (4). keyword字段适合用于过滤和精准匹配,同时可以进行快速的基于精确值的聚合操作

  3. 总节:

    (1). 在选择text还是keyword类型时, 需要根据具体需求来衡量选择,看这个字段能不能做模糊查询,如果要做模糊查询,那就用text字段

    (2). 如果需要全文本搜索,并且希望根据分词进行模糊查询,并得到匹配得分,就用text

    (3). 如需精确匹配,排序或者聚合操作,并且不会对该字段进行模糊查询,比如身份证号等关键信息,则选择keyword类型

ES配置字段类型相关的命令

复制代码
该命令时在kibana中使用的,如果时postman,请加上http://ip:port/


1. 创建索引,并指定字段的类型
PUT /my_index
{
  "mappings": {
    "properties": {
      "title": {
        "type": "text"
      },
      "tags": {
        "type": "keyword"
      },
      "publish_date": {
        "type": "date"
      },
      "rating": {
        "type": "float"
      },
      "is_published": {
        "type": "boolean"
      },
      "author": {
        "properties": {
          "name": {
            "type": "text"
          },
          "age": {
            "type": "integer"
          }
        }
      },
      "comments": {
        "type": "nested",
        "properties": {
          "user": {
            "type": "keyword"
          },
          "message": {
            "type": "text"
          }
        }
      }
    }
  }
}


插入对应数据,并使es本身自带的_id为1
POST /my_index/_doc/1
{
  "title": "小滴课堂最近上线了新课 Elasticsearch Introduction",
  "tags": ["search", "big data", "distributed system", "小滴课堂"],
  "publish_date": "2025-01-01",
  "rating": 4.5,
  "is_published": true,
  "author": {
    "name": "John Doe",
    "age": 30
  },
  "comments": [
    {
      "user": "Alice",
      "message": "Great article!"
    },
    {
      "user": "Bob",
      "message": "Very informative."
    }
  ]
}



2. 查询title字段,并模糊匹配关键字, title是text类型的
GET /my_index/_search
{
  "query": {
    "match": {
      "title": "Elasticsearch"
    }
  }
}


3. 查询tags字段,并精准匹配数组中的某个值,tags是keyword类型的
GET /my_index/_search
{
  "query": {
    "match": {
      "tags": "big data"
    }
  }
}
相关推荐
瀚高PG实验室25 分钟前
通过数据库日志获取数据库中的慢SQL
数据库·sql·瀚高数据库
辰宇信息咨询34 分钟前
3D自动光学检测(AOI)市场调研报告-发展趋势、机遇及竞争分析
大数据·数据分析
Hgfdsaqwr35 分钟前
Python在2024年的主要趋势与发展方向
jvm·数据库·python
invicinble42 分钟前
对于Mysql深入理解
数据库·mysql
阳光九叶草LXGZXJ1 小时前
达梦数据库-学习-47-DmDrs控制台命令(LSN、启停、装载)
linux·运维·数据库·sql·学习
Hgfdsaqwr2 小时前
掌握Python魔法方法(Magic Methods)
jvm·数据库·python
s1hiyu2 小时前
使用Scrapy框架构建分布式爬虫
jvm·数据库·python
2301_763472462 小时前
使用Seaborn绘制统计图形:更美更简单
jvm·数据库·python
珠海西格2 小时前
“主动预防” vs “事后补救”:分布式光伏防逆流技术的代际革命,西格电力给出标准答案
大数据·运维·服务器·分布式·云计算·能源
熊文豪2 小时前
金仓数据库如何以“多模融合“重塑文档数据库新范式
数据库·金仓数据库·电科金仓·mongodb迁移