OpenCV检测圆(Python版本)

文章目录

示例代码

python 复制代码
import cv2
import numpy as np

# 加载图像
image_path = 'DistanceComparison/test_image/1.png'
image = cv2.imread(image_path, cv2.IMREAD_COLOR)

# 将图像转换为灰度
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 使用高斯模糊消除噪声
# gray_blurred = cv2.GaussianBlur(gray, (9, 9), 2)

# 应用霍夫变换进行圆检测
circles = cv2.HoughCircles(gray,cv2.HOUGH_GRADIENT, dp=1, minDist=40, param1=40, param2=3,  minRadius=12, maxRadius=20)

# 如果找到了圆,输出圆的信息
if circles is not None:
    circles = np.uint16(np.around(circles))
    for i in circles[0, :]:
        # 绘制圆心
        cv2.circle(image, (i[0], i[1]), 1, (0, 100, 100), 3)
        # 绘制圆轮廓
        cv2.circle(image, (i[0], i[1]), i[2], (255, 0, 255), 2)

cv2.imwrite("DistanceComparison/out_image/1.png", image)

示例结果


图1:检测到的圆(粉色表示)

调参

如果你没有得到预期的结果,你可以尝试调整一些参数来优化圆的检测。以下是一些常用的参数和调整方法:

  1. param1param2:这两个参数是Canny边缘检测的阈值。增加param1可以减少检测到的圆的数量,增加param2可以过滤掉较弱的圆。你可以尝试不同的值来找到适合你图像的阈值。

  2. minRadiusmaxRadius:这两个参数用于指定允许检测到的圆的最小和最大半径。如果你知道圆的大致大小范围,可以设置这两个参数来限制检测的范围。

  3. dp参数:这个参数是霍夫梯度法的累加器分辨率与图像分辨率的反比。较小的值可以提高检测的精度,但可能会增加计算时间。较大的值可以加快计算速度,但可能会降低检测的精度。你可以尝试不同的值来平衡速度和精度。

  4. 图像预处理:在进行Hough变换之前,你可以尝试进行一些图像预处理操作,例如调整对比度、直方图均衡化、图像增强等,以提高圆的检测效果。

  5. 图像尺寸:如果图像尺寸过大,可以考虑将图像缩小到适当的尺寸,以加快计算速度。

尝试调整这些参数,并根据你的具体图像和需求进行优化。记住,在调整参数时,可以通过显示中间结果来观察效果,例如显示Canny边缘检测结果、显示霍夫累加器等。这样可以帮助你更好地理解参数对结果的影响,并进行调整。

相关推荐
itwangyang5204 分钟前
AIDD-人工智能药物设计-扩散模型热力学:从 AI 提取物理能量
人工智能
ʜᴇɴʀʏ8 分钟前
论文阅读 SAM 3: Segment Anything with Concepts
论文阅读·人工智能·目标检测·计算机视觉·目标跟踪
一人の梅雨12 分钟前
淘宝商品视频接口深度解析:从视频加密解密到多端视频流重构
java·开发语言·python
杼蛘14 分钟前
XXL-Job工具使用操作记录
linux·windows·python·jdk·kettle·xxl-job
周杰伦_Jay18 分钟前
【BGE-M3与主流RAG嵌入模型】知识库嵌入模型对比
人工智能·机器学习·eureka·开源·github
Gavin在路上21 分钟前
AI学习之Anthropic的访谈者工具
人工智能·学习
qq_2290580122 分钟前
运行djando项目 配置启动类 label_studio包含前后端启动方法
python·django
裤裤兔26 分钟前
早停法(Early_Stopping)
人工智能·深度学习
qq_2515335928 分钟前
查找 Python 中对象使用的内存量
开发语言·windows·python
yaoxin52112331 分钟前
269. Java Stream API - Map-Filter-Reduce算法模型
java·python·算法