OpenCV检测圆(Python版本)

文章目录

示例代码

python 复制代码
import cv2
import numpy as np

# 加载图像
image_path = 'DistanceComparison/test_image/1.png'
image = cv2.imread(image_path, cv2.IMREAD_COLOR)

# 将图像转换为灰度
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 使用高斯模糊消除噪声
# gray_blurred = cv2.GaussianBlur(gray, (9, 9), 2)

# 应用霍夫变换进行圆检测
circles = cv2.HoughCircles(gray,cv2.HOUGH_GRADIENT, dp=1, minDist=40, param1=40, param2=3,  minRadius=12, maxRadius=20)

# 如果找到了圆,输出圆的信息
if circles is not None:
    circles = np.uint16(np.around(circles))
    for i in circles[0, :]:
        # 绘制圆心
        cv2.circle(image, (i[0], i[1]), 1, (0, 100, 100), 3)
        # 绘制圆轮廓
        cv2.circle(image, (i[0], i[1]), i[2], (255, 0, 255), 2)

cv2.imwrite("DistanceComparison/out_image/1.png", image)

示例结果


图1:检测到的圆(粉色表示)

调参

如果你没有得到预期的结果,你可以尝试调整一些参数来优化圆的检测。以下是一些常用的参数和调整方法:

  1. param1param2:这两个参数是Canny边缘检测的阈值。增加param1可以减少检测到的圆的数量,增加param2可以过滤掉较弱的圆。你可以尝试不同的值来找到适合你图像的阈值。

  2. minRadiusmaxRadius:这两个参数用于指定允许检测到的圆的最小和最大半径。如果你知道圆的大致大小范围,可以设置这两个参数来限制检测的范围。

  3. dp参数:这个参数是霍夫梯度法的累加器分辨率与图像分辨率的反比。较小的值可以提高检测的精度,但可能会增加计算时间。较大的值可以加快计算速度,但可能会降低检测的精度。你可以尝试不同的值来平衡速度和精度。

  4. 图像预处理:在进行Hough变换之前,你可以尝试进行一些图像预处理操作,例如调整对比度、直方图均衡化、图像增强等,以提高圆的检测效果。

  5. 图像尺寸:如果图像尺寸过大,可以考虑将图像缩小到适当的尺寸,以加快计算速度。

尝试调整这些参数,并根据你的具体图像和需求进行优化。记住,在调整参数时,可以通过显示中间结果来观察效果,例如显示Canny边缘检测结果、显示霍夫累加器等。这样可以帮助你更好地理解参数对结果的影响,并进行调整。

相关推荐
__lost20 分钟前
Python图像变清晰与锐化,调整对比度,高斯滤波除躁,卷积锐化,中值滤波钝化,神经网络变清晰
python·opencv·计算机视觉
海绵波波10725 分钟前
玉米产量遥感估产系统的开发实践(持续迭代与更新)
python·flask
欣然~28 分钟前
借助 OpenCV 和 PyTorch 库,利用卷积神经网络提取图像边缘特征
人工智能·计算机视觉
豆豆1 小时前
day32 学习笔记
图像处理·笔记·opencv·学习·计算机视觉
逢生博客1 小时前
使用 Python 项目管理工具 uv 快速创建 MCP 服务(Cherry Studio、Trae 添加 MCP 服务)
python·sqlite·uv·deepseek·trae·cherry studio·mcp服务
堕落似梦1 小时前
Pydantic增强SQLALchemy序列化(FastAPI直接输出SQLALchemy查询集)
python
白熊1881 小时前
【计算机视觉】CV实战项目 - 基于YOLOv5的人脸检测与关键点定位系统深度解析
人工智能·yolo·计算机视觉
nenchoumi31191 小时前
VLA 论文精读(十六)FP3: A 3D Foundation Policy for Robotic Manipulation
论文阅读·人工智能·笔记·学习·vln
后端小肥肠1 小时前
文案号搞钱潜规则:日入四位数的Coze工作流我跑通了
人工智能·coze
LCHub低代码社区1 小时前
钧瓷产业原始创新的许昌共识:技术破壁·产业再造·生态重构(一)
大数据·人工智能·维格云·ai智能体·ai自动化·大禹智库·钧瓷码