[动态规划] (五) 路径问题: LeetCode 62.不同路径

[动态规划] (五) 路径问题: LeetCode 62.不同路径

文章目录

62. 不同路径

题目解析

(1) 机器人从左上角到右下角有多少方法

(2) 机器人只能向左或者向右移动

(3) 求总共有多少种走路的方法

解题思路
状态表示

从题目+经验

我们暂时设dp[i] [j]:以(i, j)为终点,所到达i使用的方法的数量

状态转移方程

从题目解析中可以看出,dp(i, j)的值取决于dp(i-1, j)和dp(i, j-1)的值,因为机器人只能向右或者向下走。

且我们猜测的状态表达式正好是到达以(i, j)为终点的方法。

shell 复制代码
dp[i][j] = dp[i-1][j] + dp[i][j-1]
初始化和填表
  • 初始化

我们在初始化时,发现第一排和第一列都是相同的特殊情况,需要处理。

这很麻烦,所以我们多开辟一列和一排。

每一个格子都取决于前一个与上一个相加。

所以我们只需要初始化dp[0] [1] 或者 dp[1] [0] 为1即可。

  • 填表

先填第一列,然后第二列,然后...

返回值

我们扩大了一列和一排,所以返回dp[m] [n]

看到这里,大家可以先去尝试实现代码,再来看下面的内容


代码实现
shell 复制代码
class Solution {
public:
    int uniquePaths(int m, int n) {
        //创建dp数组
        vector<vector<int>> dp(m+1, vector<int>(n+1));
        //初始化
        dp[1][0] = 1;
        //填表
        for(int i = 1; i <= m; i++)
        {
            for(int j = 1; j <= n; j++)
            {
                dp[i][j] = dp[i-1][j] + dp[i][j-1];
            }
        }
        //返回值
        return dp[m][n];
    }
};
总结

细节1:初始化,只需要扩大一列和一排就可以初始化的很方便

细节2:下标需要移位。(i-1 , j-1) => (i , j)

相关推荐
随缘而动,随遇而安6 分钟前
第八十八篇 大数据中的递归算法:从俄罗斯套娃到分布式计算的奇妙之旅
大数据·数据结构·算法
IT古董38 分钟前
【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
神经网络·算法·机器学习
Alfred king3 小时前
面试150 生命游戏
leetcode·游戏·面试·数组
水木兰亭4 小时前
数据结构之——树及树的存储
数据结构·c++·学习·算法
Jess074 小时前
插入排序的简单介绍
数据结构·算法·排序算法
老一岁4 小时前
选择排序算法详解
数据结构·算法·排序算法
xindafu5 小时前
代码随想录算法训练营第四十二天|动态规划part9
算法·动态规划
xindafu5 小时前
代码随想录算法训练营第四十五天|动态规划part12
算法·动态规划
ysa0510305 小时前
Dijkstra 算法#图论
数据结构·算法·图论
一定要AK6 小时前
2025—暑期训练一
算法