【斯坦福】FrugalGPT: 如何使用大型语言模型,同时降低成本并提高性能

重磅推荐专栏: 《大模型AIGC》《课程大纲》 本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和Stable Diffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经验分享,旨在帮助读者更好地理解和应用这些领域的最新进展

FrugalGPT: 如何使用大型语言模型,同时降低成本并提高性能 作者:Lingjiao Chen, Matei Zaharia, James Zou

引言

本文介绍了一种新颖的方法,旨在解决使用大型语言模型(LLM)时面临的成本和性能挑战。随着GPT-4和ChatGPT等LLM的日益流行,我们需要找到降低这些模型推理成本的策略。作者强调了LLM API的异构定价结构以及使用最大的LLM所带来的巨大财务、环境和能源影响。

问题陈述

使用LLM进行高吞吐量应用可能非常昂贵。例如,ChatGPT的运营成本估计每天超过70万美元,而使用GPT-4支持客户服务可能会给小型企业带来每月2.1万美元的费用。此外,使用最大的LLM还会带来可观的环境和能源影响。因此,我们需要一种方法来降低LLM的推理成本,同时保持良好的性能。

FrugalGPT的解决方案

为了解决这个问题,作者提出了FrugalGPT,这是一种简单而灵活的LLM级联方法。FrugalGPT通过学习在不同查询中使用不同LLM组合的方式,以降低成本并提高准确性。 具体而言,FrugalGPT包括三种策略:提示适应、LLM近似和LLM级联。

提示适应

提示适应是一种通过识别有效的提示来节省成本的方法。通过精心设计的提示,可以减少LLM的推理成本。例如,使用较短的提示可以降低成本,而不会显著影响性能。

LLM近似

LLM近似旨在创建更简单、更便宜的LLM,以在特定任务上与强大但昂贵的LLM相匹配。通过降低模型的复杂性和规模,可以降低成本,同时保持合理的性能。

LLM级联

LLM级联是一种自适应选择不同LLM API的方法,以适应不同查询。通过根据查询的特性选择合适的LLM组合,可以降低成本并提高准确性。

实验结果

作者通过实验证明了FrugalGPT的有效性。实验结果显示,FrugalGPT可以在与最佳单个LLM相当的性能下,降低高达98%的推理成本。此外,FrugalGPT还可以在相同成本下提高4%的准确性。这些结果表明,FrugalGPT是一种可行的方法,可以在降低成本的同时提高性能。

相关推荐
reddingtons4 小时前
【游戏宣发】PS “生成式扩展”流,30秒无损适配全渠道KV
游戏·设计模式·新媒体运营·prompt·aigc·教育电商·游戏美术
小和尚同志5 小时前
虽然 V0 很强大,但是ScreenshotToCode 依旧有市场
人工智能·aigc
后端小肥肠6 小时前
18条作品狂揽390万赞?我用Coze破解了“情绪放大镜”的流量密码
人工智能·aigc·coze
AiTop1007 小时前
英伟达Rubin芯片提前量产,物理AI“ChatGPT 时刻” 降临
人工智能·chatgpt
Electrolux9 小时前
[wllama]纯前端实现大语言模型调用:在浏览器里跑 AI 是什么体验。以调用腾讯 HY-MT1.5 混元翻译模型为例
前端·aigc·ai编程
147AI11 小时前
LLM 应用评测闭环:eval.jsonl + LLM-as-judge + 线上指标(含 Python 最小实现)
aigc·ai编程
哥只是传说中的小白12 小时前
Nano Banana Pro高并发接入Grsai Api实战!0.09/张无限批量生成(附接入实战+开源工具)
开发语言·数据库·ai作画·开源·aigc·php·api
向量引擎12 小时前
【万字硬核】解密GPT-5.2-Pro与Sora2底层架构:从Transformer到世界模型,手撸一个高并发AI中台(附Python源码+压测报告)
人工智能·gpt·ai·aigc·ai编程·ai写作·api调用
DisonTangor14 小时前
UltraShape 1.0: 高保真三维形状生成:基于可扩展几何优化
人工智能·3d·开源·aigc
GISer_Jing15 小时前
智能体基础执行模式实战:拆解、决策、并行、自优化
人工智能·设计模式·aigc