深度学习之基于Yolov5人体姿态摔倒识别分析报警系统(GUI界面)

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。

文章目录

一项目简介

系统设计概述:

  1. 传感器采集:通过在场景中布置摄像头或红外传感器等设备,采集人体姿态数据,包括人体位置、姿态、运动轨迹等信息。
  2. 数据预处理:对采集到的数据进行预处理,包括图像增强、数据归一化等操作,以提高模型的鲁棒性和准确性。
  3. Yolov5模型训练:使用经过标注的人体姿态数据集对Yolov5模型进行训练,使其能够识别不同姿态和动作的人体。
  4. 姿态检测与识别:在实时视频流中应用Yolov5模型进行姿态检测和识别,将检测结果与预设阈值进行比较,判断是否存在摔倒事件。
  5. 报警系统:根据检测结果触发报警系统,如语音报警、短信报警等,提醒相关人员注意并采取相应措施。

系统优势:

  1. 实时性:通过实时采集和处理数据,可以快速检测到摔倒事件并触发报警系统。
  2. 高精度:利用深度学习技术,Yolov5模型具有较高的姿态识别准确率,能够准确检测出人体姿态变化。
  3. 自动化:无需人工干预,系统能够自动检测并报警,提高工作效率和安全性。

系统应用场景:

  1. 公共场所:在公共场所如公园、广场、商场等地方部署摄像头或红外传感器,实时监测人群动态,及时发现摔倒事件并报警。
  2. 老年人看护:在老年人居住的区域安装摄像头或传感器,监测老年人姿态变化,及时发现摔倒事件并报警,保障老年人的安全。
  3. 残疾人看护:对于肢体残障人士,系统可以帮助监测其运动状态,防止摔倒或跌落事件的发生。

总之,基于Yolov5的人体姿态摔倒识别报警系统具有实时性、高精度和自动化等优势,可以广泛应用于公共场所、老年人看护和残疾人看护等领域,为人们的生活和安全提供有力保障。

二、功能

环境:Python3.9、OpenCV4.7、torch2.0.0、PyCharm

简介:深度学习之基于Yolov5人体姿态摔倒识别分析报警系统(GUI界面)

1\]可检测图片,视频,以及摄像头实时检测 \[2\]对摔倒行为具有报警提醒功能 \[3\]具有可视化界面,并附带登录注册功能 ## 三、系统 ![请添加图片描述](https://file.jishuzhan.net/article/1721486717245984769/dca259a5ec0fce4a5028a1c9d2b3b774.webp) ![请添加图片描述](https://file.jishuzhan.net/article/1721486717245984769/bd1a8700fcbeabea464af35e099e4002.webp) ![请添加图片描述](https://file.jishuzhan.net/article/1721486717245984769/3ad23b73720432952f4af7926b1a50ad.webp) ![请添加图片描述](https://file.jishuzhan.net/article/1721486717245984769/bcb726f0dab826c8df518360ade15b20.webp) ![请添加图片描述](https://file.jishuzhan.net/article/1721486717245984769/ab1ca522b68413e1c929c4e99c0fbb41.webp) ![请添加图片描述](https://file.jishuzhan.net/article/1721486717245984769/e9cd0394ff2ce5df69903a4e41418b7e.webp) ![请添加图片描述](https://file.jishuzhan.net/article/1721486717245984769/e285f3daae5167d0797f2a08634b73ea.webp) ## 四. 总结   深度学习在人体姿态识别领域已经取得了显著的进展,其中Yolov5是一种基于深度神经网络的人体姿态识别模型。针对人体姿态摔倒识别问题,可以利用Yolov5进行模型训练和算法优化,设计一套报警系统来检测摔倒事件并进行报警。

相关推荐
停走的风2 分钟前
二刷(李宏毅深度学习,醍醐灌顶,长刷长爽)
人工智能·深度学习
qinyia9 分钟前
Wisdom SSH:探索AI助手在复杂运维任务中的卓越表现
运维·人工智能·ssh
TY-202510 分钟前
二、深度学习——损失函数
人工智能·深度学习
Python×CATIA工业智造11 分钟前
列表页与详情页的智能识别:多维度判定方法与工业级实现
爬虫·深度学习·pycharm
京东零售技术18 分钟前
让大模型更懂你,京东零售的算法工程师做了这些事
人工智能·求职
PyAIExplorer18 分钟前
图像梯度处理与边缘检测:OpenCV 实战指南
人工智能·opencv·计算机视觉
CoovallyAIHub20 分钟前
单目深度估计重大突破:无需标签,精度超越 SOTA!西湖大学团队提出多教师蒸馏新方案
深度学习·算法·计算机视觉
biubiubiu070620 分钟前
微软云语音识别ASR示例Demo
人工智能·语音识别
CoovallyAIHub23 分钟前
从FCOS3D到PGD:看深度估计如何快速搭建你的3D检测项目
深度学习·算法·计算机视觉
大模型真好玩27 分钟前
做题王者,实战拉跨!是时候给马斯克的Grok4泼盆冷水了!(Grok 4模型详细测评报告)
人工智能·python·mcp