ubuntu 20.04 + Anaconda + cuda-11.8 + opencv-4.8.0(cuda)

环境:一键编译opencv-4.8.0(cuda),前提是已经安装好了cuda和cudnn

Anaconda安装

参考:

https://blog.csdn.net/weixin_46947765/article/details/130980957

opencv4.8.0编译安装

一键编译shell脚本

bash 复制代码
VERSION=4.8.0

test -e ${VERSION}.zip || wget https://github.com/opencv/opencv/archive/refs/tags/${VERSION}.zip
test -e opencv-${VERSION} || unzip ${VERSION}.zip

test -e opencv_extra_${VERSION}.zip || wget -O opencv_extra_${VERSION}.zip https://github.com/opencv/opencv_contrib/archive/refs/tags/${VERSION}.zip
test -e opencv_contrib-${VERSION} || unzip opencv_extra_${VERSION}.zip


cd opencv-${VERSION}
mkdir build
cd build

cmake -D CMAKE_BUILD_TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX=/usr/local/opencv-4.8.0 \
-D WITH_TBB=ON \
-D ENABLE_FAST_MATH=1 \
-D CUDA_FAST_MATH=1 \
-D WITH_CUBLAS=1 \
-D WITH_CUDA=ON \
-D BUILD_opencv_cudacodec=ON \
-D WITH_CUDNN=ON \
-D OPENCV_DNN_CUDA=ON \
-D WITH_QT=OFF \
-D WITH_OPENGL=ON \
-D BUILD_opencv_apps=OFF \
-D BUILD_opencv_python2=OFF \
-D OPENCV_GENERATE_PKGCONFIG=ON \
-D OPENCV_PC_FILE_NAME=opencv.pc \
-D OPENCV_ENABLE_NONFREE=ON \
-D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib-${VERSION}/modules \
-D INSTALL_PYTHON_EXAMPLES=OFF \
-D INSTALL_C_EXAMPLES=OFF \
-D BUILD_EXAMPLES=OFF \
-D CUDA_ARCH_BIN=7.5 \
-D WITH_FFMPEG=ON \
-D CUDNN_INCLUDE_DIR=/usr/local/cuda/include \
-D CUDNN_LIBRARY=/usr/local/cuda/lib64/libcudnn.so \
..

make -j8
sudo make -j8 install

环境设置:

bash 复制代码
打开主目录下的 .bashrc文件添加如下路径,例如我的.bashrc文件在/home/lu/下。
 
export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/opencv-4.8.0/lib/pkgconfig
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/opencv-4.8.0/lib 
 
终端运行:source ~/.bashrc

如果报错:

bash 复制代码
# 报错:
terminate called after throwing an instance of 'cv::Exception'
  what():  OpenCV(4.8.0) /media/lu/workspace/WorkSpace/visual_studio/YOLOv8-TensorRT-CPP/libs/tensorrt-cpp-api/scripts/opencv_contrib-4.8.0/modules/cudev/include/opencv2/cudev/grid/detail/transform.hpp:264: error: (-217:Gpu API call) no kernel image is available for execution on the device in function 'call'
已放弃 (核心已转储)

# 或者

error: (-216:No CUDA support) OpenCV was not built to work with the selected device. Please check CUDA_ARCH_PTX or CUDA_ARCH_BIN in your build configuration. in function 'initCUDABackend'

可能是编译opencv的时候指定的算力和显卡算力不一致导致的,可参考:

Please check CUDA_ARCH_PTX or CUDA_ARCH_BIN in your build configuration错误解决-CSDN博客

查看算力可参考下面文章:

Pytorch查看torch版本,查看torchvision版本,查看CUDA版本,查看cudnn版本,查看pytorch可用性,查看cuda可用性,查看cudnn可用性,查看显卡,指定运算GPU_C系语言的博客-CSDN博客

相关推荐
神筆&『馬良』2 小时前
Foundation_pose在自己的物体上复现指南:实现任意物体6D位姿检测(利用realsense_D435i和iphone_16pro手机)
目标检测·ubuntu·机器人·视觉检测
70asunflower2 小时前
Emulation,Simulation,Virtualization,Imitation 的区别?
linux·docker
爱打代码的小林3 小时前
基于 MediaPipe 实现实时面部关键点检测
python·opencv·计算机视觉
神梦流3 小时前
GE 引擎的内存优化终局:静态生命周期分析指导下的内存分配与复用策略
linux·运维·服务器
凡人叶枫3 小时前
C++中输入、输出和文件操作详解(Linux实战版)| 从基础到项目落地,避坑指南
linux·服务器·c语言·开发语言·c++
wdfk_prog3 小时前
[Linux]学习笔记系列 -- [drivers][input]serio
linux·笔记·学习
xuhe24 小时前
[全流程详细教程]Docker部署ClawBot, 使用GLM4.7, 接入TG Bot实现私人助理. 解决Docker Openclaw Permission Denied问题
linux·docker·ai·github·tldr
深蓝电商API4 小时前
图片验证码识别:pytesseract+opencv入门
人工智能·opencv·计算机视觉·pytesseract
Lsir10110_4 小时前
【Linux】进程信号(下半)
linux·运维·服务器
liuniu08184 小时前
VMware虚拟机安装ubuntu2022
ubuntu·ros