回归预测 | Matlab实现MPA-BP海洋捕食者算法优化BP神经网络多变量回归预测(多指标、多图)

回归预测 | Matlab实现MPA-BP海洋捕食者算法优化BP神经网络多变量回归预测(多指标、多图)

目录

    • [回归预测 | Matlab实现MPA-BP海洋捕食者算法优化BP神经网络多变量回归预测(多指标、多图)](#回归预测 | Matlab实现MPA-BP海洋捕食者算法优化BP神经网络多变量回归预测(多指标、多图))

效果一览







基本介绍

1.Matlab实现MPA-BP海洋捕食者算法优化BP神经网络多变量回归预测;

2.数据集为excel,输入6个特征,输出1个变量,运行主程序main.m即可,其余为函数文件,无需运行;

3.优化参数为神经网络的权值和偏置,命令窗口输出RMSE、MAPE、MAE、R2等评价指标;

4.运行环境Matlab2018b及以上.

5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

matlab 复制代码
function [Top_predator_fit,Top_predator_pos,Convergence_curve]=MPA(SearchAgents_no,Max_iter,lb,ub,dim,fobj)


Top_predator_pos=zeros(1,dim);
Top_predator_fit=inf; 

Convergence_curve=zeros(1,Max_iter);
stepsize=zeros(SearchAgents_no,dim);
fitness=inf(SearchAgents_no,1);


Prey=initialization(SearchAgents_no,dim,ub,lb);
  
Xmin=repmat(ones(1,dim).*lb,SearchAgents_no,1);
Xmax=repmat(ones(1,dim).*ub,SearchAgents_no,1);
         

Iter=0;
FADs=0.2;
P=0.5;

while Iter<Max_iter  
    
     %------------------- Detecting top predator -----------------    
 for i=1:size(Prey,1)  
        
    Flag4ub=Prey(i,:)>ub;
    Flag4lb=Prey(i,:)<lb;    
    Prey(i,:)=(Prey(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;                    
        
    fitness(i,1)=fobj(Prey(i,:));
                     
     if fitness(i,1)<Top_predator_fit 
       Top_predator_fit=fitness(i,1); 
       Top_predator_pos=Prey(i,:);
     end          
 end
     
     %------------------- Marine Memory saving ------------------- 
    
 if Iter==0
   fit_old=fitness;    Prey_old=Prey;
 end
     
  Inx=(fit_old<fitness);
  Indx=repmat(Inx,1,dim);
  Prey=Indx.*Prey_old+~Indx.*Prey;
  fitness=Inx.*fit_old+~Inx.*fitness;
        
  fit_old=fitness;    Prey_old=Prey;

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502

[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
不想当个技术宅1 个月前
【图像压缩与重构】基于BP神经网络
图像处理·matlab·bp神经网络·图像压缩
不想当个技术宅2 个月前
【图像压缩与重构】基于标准+改进BP神经网络
matlab·bp神经网络·gui·图像压缩
机器学习之心2 个月前
顶刊算法 | 鹈鹕算法POA-Transformer-LSTM多变量回归预测
算法·lstm·transformer·多变量回归预测·poa
机器学习之心2 个月前
回归预测 | Matlab实现GWO-BP-Adaboost灰狼算法优化BP神经网络集成学习多输入单输出回归预测
算法·matlab·回归·bp神经网络·灰狼算法优化·gwo-bp-adaboost
机器学习之心3 个月前
机器学习之心一区级 | Matlab实现SMA-Transformer-LSTM多变量回归预测(黏菌算法优化)
matlab·lstm·transformer·多变量回归预测·sma·黏菌算法优化
机器学习之心3 个月前
JCR一区级 | Matlab实现TTAO-Transformer-LSTM多变量回归预测
matlab·lstm·transformer·多变量回归预测·ttao
机器学习之心3 个月前
JCR一区级 | Matlab实现GA-Transformer-LSTM多变量回归预测
matlab·lstm·transformer·遗传算法·多变量回归预测
机器学习之心4 个月前
JCR一区级 | Matlab实现PSO-Transformer-LSTM多变量回归预测
matlab·lstm·transformer·多变量回归预测
机器学习之心5 个月前
区间预测 | Matlab实现BP-ABKDE的BP神经网络自适应带宽核密度估计多变量回归区间预测
bp神经网络·自适应带宽核密度估计·多变量回归区间预测·bp-abkde
简简单单做算法5 个月前
基于BP神经网络和小波变换特征提取的烟草香型分类算法matlab仿真,分为浓香型,清香型和中间香型
matlab·分类·bp神经网络·小波变换特征提取·烟草香型分类