顶刊算法 | 鹈鹕算法POA-Transformer-LSTM多变量回归预测

顶刊算法 | 鹈鹕算法POA-Transformer-LSTM多变量回归预测

目录

效果一览

基本介绍

1.Matlab实现顶刊算法 | 鹈鹕算法POA-Transformer-LSTM多变量回归预测(程序可以作为JCR一区级论文代码支撑,目前尚未发表);

2.优化参数为:学习率,隐含层节点,正则化参数,运行环境为Matlab2023b及以上;

3.data为数据集,输入多个特征,输出单个变量,多变量回归预测,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价;

5.模型只是提供一个衡量数据集精度的方法,因此无法保证替换数据就一定得到您满意的结果。

程序设计

  • 完整程序和数据下载私信博主回复鹈鹕算法POA-Transformer-LSTM多变量回归预测
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行



%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

相关推荐
LLM精进之路44 分钟前
美团发布 | LongCat-Flash最全解读,硬刚GPT-4.1、Kimi!
人工智能·深度学习·机器学习·语言模型·transformer
l12345sy1 小时前
Day22_【机器学习—集成学习(2)—Bagging—随机森林算法】
算法·机器学习·集成学习·bagging·随机森林算法
snowfoootball1 小时前
近期算法学习记录
学习·算法
今天也好累1 小时前
C++ 小游戏:拍桌子
c++·笔记·学习·算法
KyollBM1 小时前
【CF】Day139——杂题 (绝对值变换 | 异或 + 二分 | 随机数据 + 图论)
算法
纪元A梦1 小时前
贪心算法应用:交易费优化问题详解
算法·贪心算法
Miraitowa_cheems2 小时前
LeetCode算法日记 - Day 34: 二进制求和、字符串相乘
java·算法·leetcode·链表·职场和发展
wan5555cn2 小时前
AI生成内容的版权问题解析与实操指南
人工智能·笔记·深度学习·算法·音视频
THMAIL3 小时前
机器学习从入门到精通 - Transformer颠覆者:BERT与预训练模型实战解析
python·随机森林·机器学习·分类·bootstrap·bert·transformer
vvilkim3 小时前
PyTorch 中的循环神经网络 (RNN/LSTM):时序数据处理实战指南
pytorch·rnn·lstm