人工智能神经网络

利用女性糖尿病人的怀孕次数、血糖、血压、皮脂厚度、胰岛素等特征通过BP神经网络来预测一个女性是否患有糖尿病,并且计算出模型预测的准确率。通过女性糖尿病患者的一系列特征构建一个BP神经网络模型,通过该模型预测一名女性患有糖尿病的概率。

main.py

python 复制代码
#导入keras等模块
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense
import numpy as np
from sklearn.model_selection import train_test_split
import warnings
warnings.filterwarnings('ignore')
#导入女性糖尿病患者的特征数据
dataset = np.loadtxt('pima-indians-diabetes.csv', delimiter=',')
X = dataset[:, 0 : 8]
Y = dataset[:, 8]
# 将数据按照8:2比例分成训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=1)
print(x_train.shape)
print(x_test.shape)
# 创建BP神经网络
model = Sequential()
# 输入层8个变量,与数据维度一致
# 第一个隐藏层有12个神经元,且采用ReLU激活函数,glorot均匀分布初始化器,偏差值初始为0
model.add(Dense(12, input_dim=8, activation='relu', kernel_initializer='glorot_uniform', bias_initializer='zeros'))
# 第二个隐藏层有8个神经元,且采用ReLU激活函数
model.add(Dense(8, activation='relu'))
# 输出层1个神经元,且采用Sigmoid激活函数
model.add(Dense(1, activation='sigmoid'))
#使用adam为优化器
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(x=x_train, y=y_train, epochs=150, batch_size=10)
# 打印出模型每层权值
print(model.trainable_weights)
print(model.get_weights())
# 评估模型
scores = model.evaluate(x=x_test, y=y_test)
print('\n%s : %.2f%%' % (model.metrics_names[1], scores[1]*100))
相关推荐
milo.qu4 分钟前
AI人工智能-PyCharm的介绍&安装&应用
人工智能·python·pycharm
朝花惜时28 分钟前
供应链-库存管理之补货计算模型(二)
python·数据分析·运营
Elastic 中国社区官方博客33 分钟前
Elasticsearch:使用 Azure AI 文档智能解析 PDF 文本和表格数据
大数据·人工智能·elasticsearch·搜索引擎·pdf·全文检索·azure
量子位35 分钟前
GPT-4o 骗了所有人,逐行画图只是前端特效?!底层架构细节成迷,奥特曼呼吁大家别玩了
人工智能·gpt
神经星星36 分钟前
入选CVPR 2025!深圳大学团队等提出EchoONE,可精准分割多切面超声心动图
人工智能·深度学习·机器学习
东锋1.337 分钟前
DeepSeek V3可用的15种精美知识卡片提示词
人工智能·信息可视化
量子位38 分钟前
国产 AI 起号两周就开始自己赚钱了,全球首个 “边想边干” 的 Agent | 免费无限次
人工智能·aigc
量子位41 分钟前
嚯!OpenAI 最新内幕八卦. pdf
人工智能·openai
有一只柴犬1 小时前
3. 实战(一):Spring AI & Trae ,助力开发微信小程序
人工智能·spring·微信小程序
轻松Ai享生活1 小时前
LLM 文档摘要:技术、指标和模型
人工智能