人工智能神经网络

利用女性糖尿病人的怀孕次数、血糖、血压、皮脂厚度、胰岛素等特征通过BP神经网络来预测一个女性是否患有糖尿病,并且计算出模型预测的准确率。通过女性糖尿病患者的一系列特征构建一个BP神经网络模型,通过该模型预测一名女性患有糖尿病的概率。

main.py

python 复制代码
#导入keras等模块
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense
import numpy as np
from sklearn.model_selection import train_test_split
import warnings
warnings.filterwarnings('ignore')
#导入女性糖尿病患者的特征数据
dataset = np.loadtxt('pima-indians-diabetes.csv', delimiter=',')
X = dataset[:, 0 : 8]
Y = dataset[:, 8]
# 将数据按照8:2比例分成训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=1)
print(x_train.shape)
print(x_test.shape)
# 创建BP神经网络
model = Sequential()
# 输入层8个变量,与数据维度一致
# 第一个隐藏层有12个神经元,且采用ReLU激活函数,glorot均匀分布初始化器,偏差值初始为0
model.add(Dense(12, input_dim=8, activation='relu', kernel_initializer='glorot_uniform', bias_initializer='zeros'))
# 第二个隐藏层有8个神经元,且采用ReLU激活函数
model.add(Dense(8, activation='relu'))
# 输出层1个神经元,且采用Sigmoid激活函数
model.add(Dense(1, activation='sigmoid'))
#使用adam为优化器
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(x=x_train, y=y_train, epochs=150, batch_size=10)
# 打印出模型每层权值
print(model.trainable_weights)
print(model.get_weights())
# 评估模型
scores = model.evaluate(x=x_test, y=y_test)
print('\n%s : %.2f%%' % (model.metrics_names[1], scores[1]*100))
相关推荐
春日见2 小时前
丝滑快速拓展随机树 S-RRT(Smoothly RRT)算法核心原理与完整流程
人工智能·算法·机器学习·路径规划算法·s-rrt
二川bro3 小时前
量子计算入门:Python量子编程基础
python
陈文锦丫4 小时前
MixFormer: A Mixed CNN–Transformer Backbone
人工智能·cnn·transformer
夏天的味道٥4 小时前
@JsonIgnore对Date类型不生效
开发语言·python
tsumikistep4 小时前
【前后端】接口文档与导入
前端·后端·python·硬件架构
小毅&Nora5 小时前
【人工智能】【AI外呼】系统架构设计与实现详解
人工智能·系统架构·ai外呼
小白学大数据5 小时前
Python爬虫伪装策略:如何模拟浏览器正常访问JSP站点
java·开发语言·爬虫·python
jianqiang.xue5 小时前
别把 Scratch 当 “动画玩具”!图形化编程是算法思维的最佳启蒙
人工智能·算法·青少年编程·机器人·少儿编程
Coding茶水间6 小时前
基于深度学习的安全帽检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
头发还在的女程序员6 小时前
三天搞定招聘系统!附完整源码
开发语言·python