人工智能神经网络

利用女性糖尿病人的怀孕次数、血糖、血压、皮脂厚度、胰岛素等特征通过BP神经网络来预测一个女性是否患有糖尿病,并且计算出模型预测的准确率。通过女性糖尿病患者的一系列特征构建一个BP神经网络模型,通过该模型预测一名女性患有糖尿病的概率。

main.py

python 复制代码
#导入keras等模块
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense
import numpy as np
from sklearn.model_selection import train_test_split
import warnings
warnings.filterwarnings('ignore')
#导入女性糖尿病患者的特征数据
dataset = np.loadtxt('pima-indians-diabetes.csv', delimiter=',')
X = dataset[:, 0 : 8]
Y = dataset[:, 8]
# 将数据按照8:2比例分成训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=1)
print(x_train.shape)
print(x_test.shape)
# 创建BP神经网络
model = Sequential()
# 输入层8个变量,与数据维度一致
# 第一个隐藏层有12个神经元,且采用ReLU激活函数,glorot均匀分布初始化器,偏差值初始为0
model.add(Dense(12, input_dim=8, activation='relu', kernel_initializer='glorot_uniform', bias_initializer='zeros'))
# 第二个隐藏层有8个神经元,且采用ReLU激活函数
model.add(Dense(8, activation='relu'))
# 输出层1个神经元,且采用Sigmoid激活函数
model.add(Dense(1, activation='sigmoid'))
#使用adam为优化器
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(x=x_train, y=y_train, epochs=150, batch_size=10)
# 打印出模型每层权值
print(model.trainable_weights)
print(model.get_weights())
# 评估模型
scores = model.evaluate(x=x_test, y=y_test)
print('\n%s : %.2f%%' % (model.metrics_names[1], scores[1]*100))
相关推荐
蓦然回首却已人去楼空14 分钟前
Build a Large Language Model (From Scratch) 序章
人工智能·语言模型·自然语言处理
CM莫问16 分钟前
<论文>(微软)WINA:用于加速大语言模型推理的权重感知神经元激活
人工智能·算法·语言模型·自然语言处理·大模型·推理加速
拾忆-eleven18 分钟前
NLP学习路线图(二十六):自注意力机制
人工智能·深度学习
MYH5161 小时前
在NLP文本处理中,将字符映射到阿拉伯数字(构建词汇表vocab)的核心目的和意义
人工智能·深度学习·自然语言处理
程序员的世界你不懂1 小时前
Appium+python自动化(八)- 认识Appium- 下章
python·appium·自动化
要努力啊啊啊1 小时前
KV Cache:大语言模型推理加速的核心机制详解
人工智能·语言模型·自然语言处理
恸流失2 小时前
DJango项目
后端·python·django
Julyyyyyyyyyyy3 小时前
【软件测试】web自动化:Pycharm+Selenium+Firefox(一)
python·selenium·pycharm·自动化
mzlogin3 小时前
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
人工智能
归去_来兮3 小时前
知识图谱技术概述
大数据·人工智能·知识图谱