本文是LLM系列文章,针对《FROM INDETERMINACY TO DETERMINACY: AUGMENTING LOGICAL REASONING CAPABILITIES WITH LARGE LANGUAGE MODELS》的翻译。
从不确定性到确定性:用大型语言模型增强逻辑推理能力
- 摘要
- [1 引言](#1 引言)
- [2 相关工作](#2 相关工作)
- [3 DETERMLR](#3 DETERMLR)
- [4 实验](#4 实验)
- [5 结论](#5 结论)
摘要
大型语言模型(LLM)的最新进展彻底改变了推理任务的格局。为了增强LLM模拟人类推理的能力,许多先前的工作都集中在使用特定的思维结构(如链、树或图)对中间推理步骤进行建模。然而,基于LLM的推理在三个关键方面仍然面临挑战:1)为各种任务选择合适的推理结构;2) 充分有效地利用已知的条件来推断新的见解;3) 考虑历史推理经验对未来推理步骤的影响。为了应对这些挑战,我们提出了DetermLR,这是一种新的推理框架,它将推理过程表述为从不确定前提到确定前提的转换过程。这一过程的特点是确定性前提的逐渐积累,使结论越来越清晰。DetermLR包括三个基本组成部分:1)前提识别:我们系统地将前提分为两种不同的类型:确定型和不确定型。这使LLM能够灵活地定制推理结构,以匹配特定的任务复杂性。2) 前提优先级和探索:我们利用定量测量来评估每个前提与目标的相关性,优先考虑更相关的前提,以探索新的见解。3) 具有推理记忆的迭代过程:我们引入了一个推理记忆模块,用于自动存储和提取可用前提和推理路径,保留历史推理细节,以便在迭代推理过程中更准确地确定前提优先级和进行探索。综合实验结果表明,DetermLR在四项具有挑战性的逻辑推理任务上优于所有基线:LogiQA、ProofWriter、FOLIO和LogicalDepression。与以前的多步推理方法相比,DetermLR可以在需要更少访问状态的情况下获得更好的推理性能,突出了其在处理逻辑推理任务时的优越效率和有效性。
1 引言
2 相关工作
3 DETERMLR
4 实验
5 结论
在这项工作中,我们提出了DetermLR,这是一种新的推理框架,使基于LLM的推理更接近于人类的认知推理。首先,我们提出了一种新的视角,将推理过程表述为不确定前提到确定前提的过渡,使LLM能够为各种推理任务调整适当的推理结构。其次,我们使用定量测量来确定前提的优先级和探索,使LLM能够对更有利于探索新见解的前提进行优先级排序。此外,我们引入了一个推理记忆模块,用于自动存储和提取可用前提和推理路径,确保在迭代推理过程中考虑关键的历史推理细节。
综合实验结果表明,DetermLR在四个具有挑战性的逻辑推理任务上优于所有基线,同时需要更少的访问状态,突出了其在处理逻辑推理任务方面的卓越效率和有效性。值得注意的是,在像LogiQA这样更复杂的任务中,DetermLR表现出了更显著的进步,在更大程度上反映了类似人类的推理技能。