AUGMENTING LOGICAL REASONING CAPABILITIES WITH LARGE LANGUAGE MODELS

本文是LLM系列文章,针对《FROM INDETERMINACY TO DETERMINACY: AUGMENTING LOGICAL REASONING CAPABILITIES WITH LARGE LANGUAGE MODELS》的翻译。

从不确定性到确定性:用大型语言模型增强逻辑推理能力

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 DETERMLR](#3 DETERMLR)
  • [4 实验](#4 实验)
  • [5 结论](#5 结论)

摘要

大型语言模型(LLM)的最新进展彻底改变了推理任务的格局。为了增强LLM模拟人类推理的能力,许多先前的工作都集中在使用特定的思维结构(如链、树或图)对中间推理步骤进行建模。然而,基于LLM的推理在三个关键方面仍然面临挑战:1)为各种任务选择合适的推理结构;2) 充分有效地利用已知的条件来推断新的见解;3) 考虑历史推理经验对未来推理步骤的影响。为了应对这些挑战,我们提出了DetermLR,这是一种新的推理框架,它将推理过程表述为从不确定前提到确定前提的转换过程。这一过程的特点是确定性前提的逐渐积累,使结论越来越清晰。DetermLR包括三个基本组成部分:1)前提识别:我们系统地将前提分为两种不同的类型:确定型和不确定型。这使LLM能够灵活地定制推理结构,以匹配特定的任务复杂性。2) 前提优先级和探索:我们利用定量测量来评估每个前提与目标的相关性,优先考虑更相关的前提,以探索新的见解。3) 具有推理记忆的迭代过程:我们引入了一个推理记忆模块,用于自动存储和提取可用前提和推理路径,保留历史推理细节,以便在迭代推理过程中更准确地确定前提优先级和进行探索。综合实验结果表明,DetermLR在四项具有挑战性的逻辑推理任务上优于所有基线:LogiQA、ProofWriter、FOLIO和LogicalDepression。与以前的多步推理方法相比,DetermLR可以在需要更少访问状态的情况下获得更好的推理性能,突出了其在处理逻辑推理任务时的优越效率和有效性。

1 引言

2 相关工作

3 DETERMLR

4 实验

5 结论

在这项工作中,我们提出了DetermLR,这是一种新的推理框架,使基于LLM的推理更接近于人类的认知推理。首先,我们提出了一种新的视角,将推理过程表述为不确定前提到确定前提的过渡,使LLM能够为各种推理任务调整适当的推理结构。其次,我们使用定量测量来确定前提的优先级和探索,使LLM能够对更有利于探索新见解的前提进行优先级排序。此外,我们引入了一个推理记忆模块,用于自动存储和提取可用前提和推理路径,确保在迭代推理过程中考虑关键的历史推理细节。

综合实验结果表明,DetermLR在四个具有挑战性的逻辑推理任务上优于所有基线,同时需要更少的访问状态,突出了其在处理逻辑推理任务方面的卓越效率和有效性。值得注意的是,在像LogiQA这样更复杂的任务中,DetermLR表现出了更显著的进步,在更大程度上反映了类似人类的推理技能。

相关推荐
Chaos_Wang_3 分钟前
NLP高频面试题(二十九)——大模型解码常见参数解析
人工智能·自然语言处理
Acrelhuang10 分钟前
8.3MW屋顶光伏+光储协同:上海汽车变速器低碳工厂的能源革命-安科瑞黄安南
大数据·数据库·人工智能·物联网·数据库开发
区块链蓝海11 分钟前
沉浸式体验测评|AI Ville:我在Web3小镇“生活”了一周
人工智能·web3·生活
whaosoft-14325 分钟前
51c自动驾驶~合集15
人工智能
花楸树26 分钟前
前端搭建 MCP Client(Web版)+ Server + Agent 实践
前端·人工智能
用户876128290737436 分钟前
前端ai对话框架semi-design-vue
前端·人工智能
量子位37 分钟前
稚晖君刚挖来的 90 后机器人大牛:逆袭履历堪比爽文男主
人工智能·llm
量子位42 分钟前
200 亿机器人独角兽被曝爆雷,官方回应来了
人工智能·llm
机器之心1 小时前
细节厘米级还原、实时渲染,MTGS方法突破自动驾驶场景重建瓶颈
人工智能
arbboter1 小时前
【AI插件开发】Notepad++ AI插件开发实践:从Dock窗口集成到功能菜单实现
人工智能·notepad++·动态菜单·notepad++插件开发·dock窗口集成·ai代码辅助工具·ai对话窗口