“说完就走,结果自达”:这才是 AI 协同该有的样子

前几天 OpenAI Dev Day 的时候,我没有赶上直播,但又想了解具体内容,于是,我就在"扣子空间"发送了一条指令:

"帮我整理 OpenAI DevDay 2025 中的发布内容,分条列举,关注重要更新,并谈一下对ai编程的实际作用,一些不太重要的特性可以一笔带过"

发送完之后,我就去看旅游直播放松心情了。

大概十几分钟后,浏览器弹出通知,提醒我"扣子空间"已经帮我整理完成相关报告了。

文档结构清晰,内容完整,关键信息还有相关的参考文档,点击即可查看明细内容。

这种"说完就走,结果自达 "的体验,才算符合 Agent 代理的含义吧。

我感觉这种"全自动"的 AI 协同模式才是未来,目前的 AI 编程还有很长的路要走。

CursorTrae 这些 AI 编程助手,确实让单次任务的编码效率提升了。但目前的缺陷也非常明显:AI 完成任务需要人的参与度太高了,这使得 AI 对编程工作的提升很有限。

因此,在 Cursor 这类 AI IDE 使用体验非常好的情况下,Claude Code 等更强调少干预的 AI 编程模式依然获得了极大的发展。

"半自动 "的 AI 就像你招了一个不太让人省心的学徒,很多事情需要你去推,你去指导,虽然合计产出确实高于一人,但却远远低于两人

设想的 AI 编程模式,大体应该是(这里仅以我们探索比较多的缺陷修复场景举例):

  1. 测试提出 10 个缺陷;
  2. AI 自动为缺陷分配 Agent,并创建缺陷开发环境;
  3. 然后就是 Agent 阅读项目文档、读取相关代码、修复缺陷、提 PR;
  4. 然后由 AI 进行修复确认,并整理未成功的任务,方便人工进行审查和接手。

这样,AI 对研发的效率提升就不仅限于编码了,而是对整个流程的升级,提升效果也不再仅限于编码产出提升 30%、50% 的样子。

随着并发规模的提升和改造业务的增多,团队效率的提升甚至可以奔着 100%、200% 去。尤其针对小团队,人力将不再是团队的瓶颈,小团队也可以做更多的大事!

所以,别再只盯着 AI 提升写代码速度了。

我们更应该去探索如何将 AI 深度嵌入业务,如何更大地将 AI 能力利用起来

不妨,今天就考虑下自己哪些业务可以让 AI 进行改造提升,也欢迎留言讨论。

AI 在后台干活,我们在前方思考------这应该才是 AI 协同的未来。

相关推荐
weixin_4462608527 分钟前
LocalAI:一个免费开源的AI替代方案,让创意更自由!
人工智能·开源
CAE32032 分钟前
基于机器学习的智能垃圾短信检测超强系统
人工智能·python·机器学习·自然语言处理·垃圾短信拦截
骄傲的心别枯萎33 分钟前
RV1126 NO.37:OPENCV的图像叠加功能
人工智能·opencv·计算机视觉·音视频·视频编解码·rv1126
HyperAI超神经33 分钟前
解决蛋白质构象异质性的原子级建模挑战!David Baker团队PLACER框架解析
人工智能·深度学习·ai·ai4s·蛋白质结构
雨夜的星光1 小时前
将 AI 注入终端:Gemini CLI 保姆级安装与实战指南
ai编程
TG:@yunlaoda360 云老大3 小时前
腾讯WAIC发布“1+3+N”AI全景图:混元3D世界模型开源,具身智能平台Tairos亮相
人工智能·3d·开源·腾讯云
这张生成的图像能检测吗4 小时前
(论文速读)Fast3R:在一个向前通道中实现1000+图像的3D重建
人工智能·深度学习·计算机视觉·3d重建
fundroid4 小时前
Android Studio + Gemini:重塑安卓 AI 开发新范式
android·android studio·ai编程
金木讲编程6 小时前
如何创建“国学助手”GPT?
gpt·ai编程
兴趣使然黄小黄7 小时前
【AI-agent】LangChain开发智能体工具流程
人工智能·microsoft·langchain