“说完就走,结果自达”:这才是 AI 协同该有的样子

前几天 OpenAI Dev Day 的时候,我没有赶上直播,但又想了解具体内容,于是,我就在"扣子空间"发送了一条指令:

"帮我整理 OpenAI DevDay 2025 中的发布内容,分条列举,关注重要更新,并谈一下对ai编程的实际作用,一些不太重要的特性可以一笔带过"

发送完之后,我就去看旅游直播放松心情了。

大概十几分钟后,浏览器弹出通知,提醒我"扣子空间"已经帮我整理完成相关报告了。

文档结构清晰,内容完整,关键信息还有相关的参考文档,点击即可查看明细内容。

这种"说完就走,结果自达 "的体验,才算符合 Agent 代理的含义吧。

我感觉这种"全自动"的 AI 协同模式才是未来,目前的 AI 编程还有很长的路要走。

CursorTrae 这些 AI 编程助手,确实让单次任务的编码效率提升了。但目前的缺陷也非常明显:AI 完成任务需要人的参与度太高了,这使得 AI 对编程工作的提升很有限。

因此,在 Cursor 这类 AI IDE 使用体验非常好的情况下,Claude Code 等更强调少干预的 AI 编程模式依然获得了极大的发展。

"半自动 "的 AI 就像你招了一个不太让人省心的学徒,很多事情需要你去推,你去指导,虽然合计产出确实高于一人,但却远远低于两人

设想的 AI 编程模式,大体应该是(这里仅以我们探索比较多的缺陷修复场景举例):

  1. 测试提出 10 个缺陷;
  2. AI 自动为缺陷分配 Agent,并创建缺陷开发环境;
  3. 然后就是 Agent 阅读项目文档、读取相关代码、修复缺陷、提 PR;
  4. 然后由 AI 进行修复确认,并整理未成功的任务,方便人工进行审查和接手。

这样,AI 对研发的效率提升就不仅限于编码了,而是对整个流程的升级,提升效果也不再仅限于编码产出提升 30%、50% 的样子。

随着并发规模的提升和改造业务的增多,团队效率的提升甚至可以奔着 100%、200% 去。尤其针对小团队,人力将不再是团队的瓶颈,小团队也可以做更多的大事!

所以,别再只盯着 AI 提升写代码速度了。

我们更应该去探索如何将 AI 深度嵌入业务,如何更大地将 AI 能力利用起来

不妨,今天就考虑下自己哪些业务可以让 AI 进行改造提升,也欢迎留言讨论。

AI 在后台干活,我们在前方思考------这应该才是 AI 协同的未来。

相关推荐
陈天伟教授2 分钟前
人工智能应用-机器听觉:15. 声纹识别的应用
人工智能·神经网络·机器学习·语音识别
zhang133830890753 分钟前
CG-09H 超声波风速风向传感器 加热型 ABS材质 重量轻 没有机械部件
大数据·运维·网络·人工智能·自动化
板面华仔26 分钟前
机器学习入门(三)——决策树(Decision Tree)
人工智能·决策树·机器学习
GAOJ_K39 分钟前
滚珠花键的无预压、间隙调整与过盈配合“场景适配型”
人工智能·科技·机器人·自动化·制造
ai_xiaogui44 分钟前
【开源探索】Panelai:重新定义AI服务器管理面板,助力团队私有化算力部署与模型运维
人工智能·开源·私有化部署·docker容器化·panelai·ai服务器管理面板·comfyui集群管理
源于花海1 小时前
迁移学习的前沿知识(AI与人类经验结合、传递式、终身、在线、强化、可解释性等)
人工智能·机器学习·迁移学习·迁移学习前沿
king of code porter1 小时前
百宝箱企业版搭建智能体应用-平台概述
人工智能·大模型·智能体
愚公搬代码1 小时前
【愚公系列】《AI短视频创作一本通》004-AI短视频的准备工作(创作AI短视频的基本流程)
人工智能·音视频
物联网软硬件开发-轨物科技1 小时前
【轨物洞见】告别“被动维修”!预测性运维如何重塑老旧电站的资产价值?
运维·人工智能
电商API_180079052471 小时前
第三方淘宝商品详情 API 全维度调用指南:从技术对接到生产落地
java·大数据·前端·数据库·人工智能·网络爬虫