论文阅读—— BiFormer(cvpr2023)

论文:https://arxiv.org/abs/2303.08810

github:GitHub - rayleizhu/BiFormer: [CVPR 2023] Official code release of our paper "BiFormer: Vision Transformer with Bi-Level Routing Attention"

一、介绍

1、要解决的问题:transformers可以捕捉长期依赖,但是它具有很高的计算复杂性,并占用大量内存。

2、之前研究者解决这个问题的做法,一般都是稀疏注意力:

1)基于手动设计的稀疏模式:在局部窗口或空洞窗口的限制注意力

2)使得稀疏性可以自适应于数据

上面这些方法使用不同的策略融合或者选择和查询无关的键值token,这些token对所有查询共享。但是根据VIT和DETR的可视化结果,不同语义区域的查询对应不同的键值对。

3、所以作者的方法是动态的、查询相关的query-aware,找到最有相关性的键值对。

本文的想法:主要想法是先在区域级别粗略的过滤掉和查询不相关的键值对,这样留下一小部分topk选好的区域routed regions,然后在这些区域上使用细粒度token到token的细粒度注意力机制。

二、方法:

1、Bi-Level Routing Attention

1)输入图片HxWxC,分成SxS个区域,reshape到,然后求出Q,K,V

2)求相关区域

每个区域的,求区域之间的相似性矩阵,文中称为通过矩阵相乘得到的region-to-region affinity graph:,衡量了两个区域之间的语义相关性大小。然后选出topk个区域,I的第i行是最相关的k个区域的索引。

3)Token-to-token attention

为了能在GPU并行计算,先把K和V聚集在一起,然后再计算注意力:

4)分析得到的提出的BRA(Bi-Level Routing Attention)复杂度,而一般的注意力复杂度为

2、BiFormer

BRA作为基础模块,采用四层金字塔结构。

patch merging module用来减少空间分辨率同时增加通道数。

相关推荐
铅笔侠_小龙虾35 分钟前
深度学习理论推导--梯度下降法
人工智能·深度学习
&&Citrus2 小时前
【杂谈】SNNU公共计算平台:深度学习服务器配置与远程开发指北
服务器·人工智能·vscode·深度学习·snnu
STLearner2 小时前
AI论文速读 | U-Cast:学习高维时间序列预测的层次结构
大数据·论文阅读·人工智能·深度学习·学习·机器学习·数据挖掘
黑客思维者3 小时前
LLM底层原理学习笔记:Adam优化器为何能征服巨型模型成为深度学习的“速度与稳定之王”
笔记·深度学习·学习·llm·adam优化器
LDG_AGI6 小时前
【推荐系统】深度学习训练框架(十):PyTorch Dataset—PyTorch数据基石
人工智能·pytorch·分布式·python·深度学习·机器学习
AI人工智能+6 小时前
表格识别技术:完整还原银行对账单表格结构、逻辑关系及视觉布局,大幅提升使处理速度提升
人工智能·深度学习·ocr·表格识别
胡乱编胡乱赢7 小时前
Decaf攻击:联邦学习中的数据分布分解攻击
人工智能·深度学习·机器学习·联邦学习·decaf攻击
远上寒山7 小时前
DINO 系列(v1/v2/v3)之二:DINOv2 原理的详细介绍
人工智能·深度学习·自监督·dinov2·自蒸馏·dino系列
_codemonster7 小时前
深度学习实战(基于pytroch)系列(四十)长短期记忆(LSTM)从零开始实现
人工智能·深度学习·lstm