论文阅读—— BiFormer(cvpr2023)

论文:https://arxiv.org/abs/2303.08810

github:GitHub - rayleizhu/BiFormer: [CVPR 2023] Official code release of our paper "BiFormer: Vision Transformer with Bi-Level Routing Attention"

一、介绍

1、要解决的问题:transformers可以捕捉长期依赖,但是它具有很高的计算复杂性,并占用大量内存。

2、之前研究者解决这个问题的做法,一般都是稀疏注意力:

1)基于手动设计的稀疏模式:在局部窗口或空洞窗口的限制注意力

2)使得稀疏性可以自适应于数据

上面这些方法使用不同的策略融合或者选择和查询无关的键值token,这些token对所有查询共享。但是根据VIT和DETR的可视化结果,不同语义区域的查询对应不同的键值对。

3、所以作者的方法是动态的、查询相关的query-aware,找到最有相关性的键值对。

本文的想法:主要想法是先在区域级别粗略的过滤掉和查询不相关的键值对,这样留下一小部分topk选好的区域routed regions,然后在这些区域上使用细粒度token到token的细粒度注意力机制。

二、方法:

1、Bi-Level Routing Attention

1)输入图片HxWxC,分成SxS个区域,reshape到,然后求出Q,K,V

2)求相关区域

每个区域的,求区域之间的相似性矩阵,文中称为通过矩阵相乘得到的region-to-region affinity graph:,衡量了两个区域之间的语义相关性大小。然后选出topk个区域,I的第i行是最相关的k个区域的索引。

3)Token-to-token attention

为了能在GPU并行计算,先把K和V聚集在一起,然后再计算注意力:

4)分析得到的提出的BRA(Bi-Level Routing Attention)复杂度,而一般的注意力复杂度为

2、BiFormer

BRA作为基础模块,采用四层金字塔结构。

patch merging module用来减少空间分辨率同时增加通道数。

相关推荐
FairyGirlhub2 小时前
神经网络的初始化:权重与偏置的数学策略
人工智能·深度学习·神经网络
大写-凌祁6 小时前
零基础入门深度学习:从理论到实战,GitHub+开源资源全指南(2025最新版)
人工智能·深度学习·开源·github
wan5555cn7 小时前
多张图片生成视频模型技术深度解析
人工智能·笔记·深度学习·算法·音视频
格林威8 小时前
机器视觉检测的光源基础知识及光源选型
人工智能·深度学习·数码相机·yolo·计算机视觉·视觉检测
THMAIL9 小时前
量化股票从贫穷到财务自由之路 - 零基础搭建Python量化环境:Anaconda、Jupyter实战指南
linux·人工智能·python·深度学习·机器学习·金融
xcnn_9 小时前
深度学习基础概念回顾(Pytorch架构)
人工智能·pytorch·深度学习
attitude.x10 小时前
PyTorch 动态图的灵活性与实用技巧
前端·人工智能·深度学习
Ven%10 小时前
第一章 神经网络的复习
人工智能·深度学习·神经网络
研梦非凡11 小时前
CVPR 2025|基于视觉语言模型的零样本3D视觉定位
人工智能·深度学习·计算机视觉·3d·ai·语言模型·自然语言处理
ViperL113 小时前
[优化算法]神经网络结构搜索(一)
深度学习·神经网络·计算机视觉