一、利用python基于日期、时间和经纬度批量下载MODIS数据
我想根据一些实测点下载对应时间和位置的MODIS数据(5min一景的产品)作为对比。
之前想了很多种方法,比如基于GEE什么的,但是我下载的MODIS产品在GEE上没有。
于是后来考虑可以用这个网站
| National Snow and Ice Data Center
这个网站可以搜索比如MYD29是我需要下载的产品,然后搜索MOD29 download就可以进入
MODIS/Terra Sea Ice Extent 5-Min L2 Swath 1km, Version 61 | National Snow and Ice Data Center
这里有很多下载的方式,选第二个Data Access Tool,get data.
然后可以用其中的一条实测点数据,输入到左边的输入框中,这样右边就有数据了,然后点击
Download Script就可以下载到下载这个条件数据的python代码,以下是代码,修改当中函数的username和password即可,然后再修改main函数,设定不同的bounding box(位置)和time什么的按照你的要求搜索并下载数据就行啦。
但是这个程序经常会因为网络不稳定而断掉,所以可能需要自己重启,或者再exception里面修改进行重启。但是值得一提的是,global 变量并不是在函数里修改然后再次进入这个函数就可以接着运行的,必须要重新传入(如果有修改的话),否在就重启后还是最上面的那个值。
python
#!/usr/bin/env python
# ----------------------------------------------------------------------------
# NSIDC Data Download Script
#
# Copyright (c) 2023 Regents of the University of Colorado
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# Tested in Python 2.7 and Python 3.4, 3.6, 3.7, 3.8, 3.9
#
# To run the script at a Linux, macOS, or Cygwin command-line terminal:
# $ python nsidc-data-download.py
#
# On Windows, open Start menu -> Run and type cmd. Then type:
# python nsidc-data-download.py
#
# The script will first search Earthdata for all matching files.
# You will then be prompted for your Earthdata username/password
# and the script will download the matching files.
#
# If you wish, you may store your Earthdata username/password in a .netrc
# file in your $HOME directory and the script will automatically attempt to
# read this file. The .netrc file should have the following format:
# machine urs.earthdata.nasa.gov login MYUSERNAME password MYPASSWORD
# where 'MYUSERNAME' and 'MYPASSWORD' are your Earthdata credentials.
#
# Instead of a username/password, you may use an Earthdata bearer token.
# To construct a bearer token, log into Earthdata and choose "Generate Token".
# To use the token, when the script prompts for your username,
# just press Return (Enter). You will then be prompted for your token.
# You can store your bearer token in the .netrc file in the following format:
# machine urs.earthdata.nasa.gov login token password MYBEARERTOKEN
# where 'MYBEARERTOKEN' is your Earthdata bearer token.
#
from __future__ import print_function
import base64
import getopt
import itertools
import json
import math
import netrc
import os.path
import ssl
import sys
import time
from getpass import getpass
try:
from urllib.parse import urlparse
from urllib.request import urlopen, Request, build_opener, HTTPCookieProcessor
from urllib.error import HTTPError, URLError
except ImportError:
from urlparse import urlparse
from urllib2 import urlopen, Request, HTTPError, URLError, build_opener, HTTPCookieProcessor
short_name = 'MYD29'
version = '61'
time_start = '2002-07-04T00:00:00Z'
time_end = '2023-11-07T04:01:18Z'
bounding_box = ''
polygon = ''
filename_filter = '*MYD29.A2020001.1855.061.2020321085433*'
url_list = []
CMR_URL = 'https://cmr.earthdata.nasa.gov'
URS_URL = 'https://urs.earthdata.nasa.gov'
CMR_PAGE_SIZE = 2000
CMR_FILE_URL = ('{0}/search/granules.json?provider=NSIDC_ECS'
'&sort_key[]=start_date&sort_key[]=producer_granule_id'
'&scroll=true&page_size={1}'.format(CMR_URL, CMR_PAGE_SIZE))
def get_username():
username = ''
# For Python 2/3 compatibility:
try:
do_input = raw_input # noqa
except NameError:
do_input = input
username = do_input('Earthdata username (or press Return to use a bearer token): ')
return username
def get_password():
password = ''
while not password:
password = getpass('password: ')
return password
def get_token():
token = ''
while not token:
token = getpass('bearer token: ')
return token
def get_login_credentials():
"""Get user credentials from .netrc or prompt for input."""
credentials = None
token = None
try:
info = netrc.netrc()
username, account, password = info.authenticators(urlparse(URS_URL).hostname)
if username == 'token':
token = password
else:
credentials = '{0}:{1}'.format(username, password)
credentials = base64.b64encode(credentials.encode('ascii')).decode('ascii')
except Exception:
username = None
password = None
if not username:
username = get_username()
if len(username):
password = get_password()
credentials = '{0}:{1}'.format(username, password)
credentials = base64.b64encode(credentials.encode('ascii')).decode('ascii')
else:
token = get_token()
return credentials, token
def build_version_query_params(version):
desired_pad_length = 3
if len(version) > desired_pad_length:
print('Version string too long: "{0}"'.format(version))
quit()
version = str(int(version)) # Strip off any leading zeros
query_params = ''
while len(version) <= desired_pad_length:
padded_version = version.zfill(desired_pad_length)
query_params += '&version={0}'.format(padded_version)
desired_pad_length -= 1
return query_params
def filter_add_wildcards(filter):
if not filter.startswith('*'):
filter = '*' + filter
if not filter.endswith('*'):
filter = filter + '*'
return filter
def build_filename_filter(filename_filter):
filters = filename_filter.split(',')
result = '&options[producer_granule_id][pattern]=true'
for filter in filters:
result += '&producer_granule_id[]=' + filter_add_wildcards(filter)
return result
def build_cmr_query_url(short_name, version, time_start, time_end,
bounding_box=None, polygon=None,
filename_filter=None):
params = '&short_name={0}'.format(short_name)
params += build_version_query_params(version)
params += '&temporal[]={0},{1}'.format(time_start, time_end)
if polygon:
params += '&polygon={0}'.format(polygon)
elif bounding_box:
params += '&bounding_box={0}'.format(bounding_box)
if filename_filter:
params += build_filename_filter(filename_filter)
return CMR_FILE_URL + params
def get_speed(time_elapsed, chunk_size):
if time_elapsed <= 0:
return ''
speed = chunk_size / time_elapsed
if speed <= 0:
speed = 1
size_name = ('', 'k', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y')
i = int(math.floor(math.log(speed, 1000)))
p = math.pow(1000, i)
return '{0:.1f}{1}B/s'.format(speed / p, size_name[i])
def output_progress(count, total, status='', bar_len=60):
if total <= 0:
return
fraction = min(max(count / float(total), 0), 1)
filled_len = int(round(bar_len * fraction))
percents = int(round(100.0 * fraction))
bar = '=' * filled_len + ' ' * (bar_len - filled_len)
fmt = ' [{0}] {1:3d}% {2} '.format(bar, percents, status)
print('\b' * (len(fmt) + 4), end='') # clears the line
sys.stdout.write(fmt)
sys.stdout.flush()
def cmr_read_in_chunks(file_object, chunk_size=1024 * 1024):
"""Read a file in chunks using a generator. Default chunk size: 1Mb."""
while True:
data = file_object.read(chunk_size)
if not data:
break
yield data
def get_login_response(url, credentials, token):
opener = build_opener(HTTPCookieProcessor())
req = Request(url)
if token:
req.add_header('Authorization', 'Bearer {0}'.format(token))
elif credentials:
try:
response = opener.open(req)
# We have a redirect URL - try again with authorization.
url = response.url
except HTTPError:
# No redirect - just try again with authorization.
pass
except Exception as e:
print('Error{0}: {1}'.format(type(e), str(e)))
sys.exit(1)
req = Request(url)
req.add_header('Authorization', 'Basic {0}'.format(credentials))
try:
response = opener.open(req)
except HTTPError as e:
err = 'HTTP error {0}, {1}'.format(e.code, e.reason)
if 'Unauthorized' in e.reason:
if token:
err += ': Check your bearer token'
else:
err += ': Check your username and password'
print(err)
sys.exit(1)
except Exception as e:
print('Error{0}: {1}'.format(type(e), str(e)))
sys.exit(1)
return response
def cmr_download(urls, force=False, quiet=False):
"""Download files from list of urls."""
if not urls:
return
url_count = len(urls)
if not quiet:
print('Downloading {0} files...'.format(url_count))
credentials = None
token = None
for index, url in enumerate(urls, start=1):
if not credentials and not token:
p = urlparse(url)
if p.scheme == 'https':
credentials, token = get_login_credentials()
filename = url.split('/')[-1]
if not quiet:
print('{0}/{1}: {2}'.format(str(index).zfill(len(str(url_count))),
url_count, filename))
try:
response = get_login_response(url, credentials, token)
length = int(response.headers['content-length'])
try:
if not force and length == os.path.getsize(filename):
if not quiet:
print(' File exists, skipping')
continue
except OSError:
pass
count = 0
chunk_size = min(max(length, 1), 1024 * 1024)
max_chunks = int(math.ceil(length / chunk_size))
time_initial = time.time()
with open(filename, 'wb') as out_file:
for data in cmr_read_in_chunks(response, chunk_size=chunk_size):
out_file.write(data)
if not quiet:
count = count + 1
time_elapsed = time.time() - time_initial
download_speed = get_speed(time_elapsed, count * chunk_size)
output_progress(count, max_chunks, status=download_speed)
if not quiet:
print()
except HTTPError as e:
print('HTTP error {0}, {1}'.format(e.code, e.reason))
except URLError as e:
print('URL error: {0}'.format(e.reason))
except IOError:
raise
def cmr_filter_urls(search_results):
"""Select only the desired data files from CMR response."""
if 'feed' not in search_results or 'entry' not in search_results['feed']:
return []
entries = [e['links']
for e in search_results['feed']['entry']
if 'links' in e]
# Flatten "entries" to a simple list of links
links = list(itertools.chain(*entries))
urls = []
unique_filenames = set()
for link in links:
if 'href' not in link:
# Exclude links with nothing to download
continue
if 'inherited' in link and link['inherited'] is True:
# Why are we excluding these links?
continue
if 'rel' in link and 'data#' not in link['rel']:
# Exclude links which are not classified by CMR as "data" or "metadata"
continue
if 'title' in link and 'opendap' in link['title'].lower():
# Exclude OPeNDAP links--they are responsible for many duplicates
# This is a hack; when the metadata is updated to properly identify
# non-datapool links, we should be able to do this in a non-hack way
continue
filename = link['href'].split('/')[-1]
if filename in unique_filenames:
# Exclude links with duplicate filenames (they would overwrite)
continue
unique_filenames.add(filename)
urls.append(link['href'])
return urls
def cmr_search(short_name, version, time_start, time_end,
bounding_box='', polygon='', filename_filter='', quiet=False):
"""Perform a scrolling CMR query for files matching input criteria."""
cmr_query_url = build_cmr_query_url(short_name=short_name, version=version,
time_start=time_start, time_end=time_end,
bounding_box=bounding_box,
polygon=polygon, filename_filter=filename_filter)
if not quiet:
print('Querying for data:\n\t{0}\n'.format(cmr_query_url))
cmr_scroll_id = None
ctx = ssl.create_default_context()
ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE
urls = []
hits = 0
while True:
req = Request(cmr_query_url)
if cmr_scroll_id:
req.add_header('cmr-scroll-id', cmr_scroll_id)
try:
response = urlopen(req, context=ctx)
except Exception as e:
print('Error: ' + str(e))
sys.exit(1)
if not cmr_scroll_id:
# Python 2 and 3 have different case for the http headers
headers = {k.lower(): v for k, v in dict(response.info()).items()}
cmr_scroll_id = headers['cmr-scroll-id']
hits = int(headers['cmr-hits'])
if not quiet:
if hits > 0:
print('Found {0} matches.'.format(hits))
else:
print('Found no matches.')
search_page = response.read()
search_page = json.loads(search_page.decode('utf-8'))
url_scroll_results = cmr_filter_urls(search_page)
if not url_scroll_results:
break
if not quiet and hits > CMR_PAGE_SIZE:
print('.', end='')
sys.stdout.flush()
urls += url_scroll_results
if not quiet and hits > CMR_PAGE_SIZE:
print()
return urls
def main(argv=None):
global short_name, version, time_start, time_end, bounding_box, \
polygon, filename_filter, url_list
if argv is None:
argv = sys.argv[1:]
force = False
quiet = False
usage = 'usage: nsidc-download_***.py [--help, -h] [--force, -f] [--quiet, -q]'
try:
opts, args = getopt.getopt(argv, 'hfq', ['help', 'force', 'quiet'])
for opt, _arg in opts:
if opt in ('-f', '--force'):
force = True
elif opt in ('-q', '--quiet'):
quiet = True
elif opt in ('-h', '--help'):
print(usage)
sys.exit(0)
except getopt.GetoptError as e:
print(e.args[0])
print(usage)
sys.exit(1)
# Supply some default search parameters, just for testing purposes.
# These are only used if the parameters aren't filled in up above.
if 'short_name' in short_name:
short_name = 'ATL06'
version = '003'
time_start = '2018-10-14T00:00:00Z'
time_end = '2021-01-08T21:48:13Z'
bounding_box = ''
polygon = ''
filename_filter = '*ATL06_2020111121*'
url_list = []
try:
if not url_list:
url_list = cmr_search(short_name, version, time_start, time_end,
bounding_box=bounding_box, polygon=polygon,
filename_filter=filename_filter, quiet=quiet)
cmr_download(url_list, force=force, quiet=quiet)
except KeyboardInterrupt:
quit()
if __name__ == '__main__':
main()
二、批量处理MODIS数据
这个用HEG这个即可,就只需要选择input-file,然后选择第二个,输入一个hdf文件,然后下面各种参数调整,最后选择batch run就行,他就会把文件夹里的MODIS数据都跑了,在HEGOUT文件夹里有输出的tif。但是值得注意的是,我发现似乎最多只能处理900多一些景。然后就不跑了,不知道为什么