找到【SVM】中最优的惩罚项系数C

因为本来SVM是想找到间隔最大的分割面,所以C越大,SVC会选择边际更小的,能够更好的分类所有训练点的决策边界,不过模型的训练时间也会越长。如果C的设定值较小,那SVC会尽量最大化边界,决策功能会更简单,但代价是训练的准确度。

我们先来调线性核函数:

python 复制代码
#调线性核函数
score = []
C_range = np.linspace(0.01,30,50)
for i in C_range:
    clf = SVC(kernel="linear",C=i,cache_size=5000).fit(Xtrain,Ytrain)
    score.append(clf.score(Xtest,Ytest))
print(max(score), C_range[score.index(max(score))])
plt.plot(C_range,score)
plt.show()

输出结果为:0.9766081871345029 1.2340816326530613

可以看到准确率最高是97%以上。接下来我们来看看在rbf上的结果:

python 复制代码
score = []
C_range = np.linspace(0.01,30,50)
for i in C_range:
    clf = SVC(kernel="rbf",C=i,gamma = 0.012742749857031322,cache_size=5000).fit(Xtrain,Ytrain)
    score.append(clf.score(Xtest,Ytest))
    
print(max(score), C_range[score.index(max(score))])
plt.plot(C_range,score)
plt.show()

输出结果为:0.9824561403508771 6.130408163265306

既然最高的得分所对应的C值是6,那么我们可以在5-7之间进一步细化,看能否找到一个更好的局部最优:

python 复制代码
#进一步细化
score = []
C_range = np.linspace(5,7,50)
for i in C_range:
    clf = SVC(kernel="rbf",C=i,gamma = 
0.012742749857031322,cache_size=5000).fit(Xtrain,Ytrain)
    score.append(clf.score(Xtest,Ytest))
    
print(max(score), C_range[score.index(max(score))])
plt.plot(C_range,score)
plt.show()

输出结果为:0.9824561403508771 5.938775510204081

可以看到,98.2456%就是我们最好的得分。

相关推荐
三年呀2 分钟前
深入探索量子机器学习:原理、实践与未来趋势的全景剖析
人工智能·深度学习·机器学习·量子计算
阿杰学AI2 分钟前
AI核心知识22——大语言模型之重要参数Top-P(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·模型参数·top-p
腾讯云开发者2 分钟前
架构火花|35岁程序员该做些什么:留在国企vs切换赛道
人工智能
Christo34 分钟前
AAAI-2013《Spectral Rotation versus K-Means in Spectral Clustering》
人工智能·算法·机器学习·数据挖掘·kmeans
摘星编程4 分钟前
openGauss DataVec向量数据库集成:面向AI应用的相似性搜索与知识图谱存储
数据库·人工智能·知识图谱
qq_376766247 分钟前
机房U位资产管理系统的数据分析能力:如何让数据中心运维效率升级?
网络·人工智能
m0_571186607 分钟前
第二十五周周报
人工智能
bulingg9 分钟前
常见的特征工程:数值型、类别型特征处理;特征构造、选择、文本特征处理、缺失值处理
人工智能·机器学习
阿杰学AI9 分钟前
AI核心知识21——大语言模型之核心参数Temperature(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·temperature·大模型参数
得贤招聘官10 分钟前
AI重塑招聘生态:从效率革命到职能升级
人工智能