找到【SVM】中最优的惩罚项系数C

因为本来SVM是想找到间隔最大的分割面,所以C越大,SVC会选择边际更小的,能够更好的分类所有训练点的决策边界,不过模型的训练时间也会越长。如果C的设定值较小,那SVC会尽量最大化边界,决策功能会更简单,但代价是训练的准确度。

我们先来调线性核函数:

python 复制代码
#调线性核函数
score = []
C_range = np.linspace(0.01,30,50)
for i in C_range:
    clf = SVC(kernel="linear",C=i,cache_size=5000).fit(Xtrain,Ytrain)
    score.append(clf.score(Xtest,Ytest))
print(max(score), C_range[score.index(max(score))])
plt.plot(C_range,score)
plt.show()

输出结果为:0.9766081871345029 1.2340816326530613

可以看到准确率最高是97%以上。接下来我们来看看在rbf上的结果:

python 复制代码
score = []
C_range = np.linspace(0.01,30,50)
for i in C_range:
    clf = SVC(kernel="rbf",C=i,gamma = 0.012742749857031322,cache_size=5000).fit(Xtrain,Ytrain)
    score.append(clf.score(Xtest,Ytest))
    
print(max(score), C_range[score.index(max(score))])
plt.plot(C_range,score)
plt.show()

输出结果为:0.9824561403508771 6.130408163265306

既然最高的得分所对应的C值是6,那么我们可以在5-7之间进一步细化,看能否找到一个更好的局部最优:

python 复制代码
#进一步细化
score = []
C_range = np.linspace(5,7,50)
for i in C_range:
    clf = SVC(kernel="rbf",C=i,gamma = 
0.012742749857031322,cache_size=5000).fit(Xtrain,Ytrain)
    score.append(clf.score(Xtest,Ytest))
    
print(max(score), C_range[score.index(max(score))])
plt.plot(C_range,score)
plt.show()

输出结果为:0.9824561403508771 5.938775510204081

可以看到,98.2456%就是我们最好的得分。

相关推荐
GISer_Jing5 分钟前
AI Agent 人类参与HITL与知识检索RAG
人工智能·设计模式·aigc
智界前沿43 分钟前
2026可落地商用数字人选型指南:TOP5产品深度测评与实战对比
人工智能·aigc·数字人
Coder_Boy_1 小时前
基于SpringAI的在线考试系统-企业级软件研发工程应用规范实现细节
大数据·开发语言·人工智能·spring boot
GISer_Jing2 小时前
AI开发实战:从零搭建智能应用
人工智能·prompt·aigc
WZGL12302 小时前
智慧养老方兴未艾,“AI+养老”让银龄老人晚年更美好
大数据·人工智能·物联网·生活·智能家居
狼爷2 小时前
一文看懂 AI 世界里的新黑话Skills、MCP、Projects、Prompts
人工智能·openai·ai编程
疾风sxp2 小时前
nl2sql技术实现自动sql生成之langchain4j SqlDatabaseContentRetriever
java·人工智能·langchain4j
DisonTangor2 小时前
阿里Qwen开源Qwen3-VL-Embedding 和 Qwen3-VL-Reranker
人工智能·搜索引擎·开源·aigc·embedding
其美杰布-富贵-李2 小时前
深度学习中的 tmux
服务器·人工智能·深度学习·tmux
<-->2 小时前
deepspeed vs vllm
人工智能