找到【SVM】中最优的惩罚项系数C

因为本来SVM是想找到间隔最大的分割面,所以C越大,SVC会选择边际更小的,能够更好的分类所有训练点的决策边界,不过模型的训练时间也会越长。如果C的设定值较小,那SVC会尽量最大化边界,决策功能会更简单,但代价是训练的准确度。

我们先来调线性核函数:

python 复制代码
#调线性核函数
score = []
C_range = np.linspace(0.01,30,50)
for i in C_range:
    clf = SVC(kernel="linear",C=i,cache_size=5000).fit(Xtrain,Ytrain)
    score.append(clf.score(Xtest,Ytest))
print(max(score), C_range[score.index(max(score))])
plt.plot(C_range,score)
plt.show()

输出结果为:0.9766081871345029 1.2340816326530613

可以看到准确率最高是97%以上。接下来我们来看看在rbf上的结果:

python 复制代码
score = []
C_range = np.linspace(0.01,30,50)
for i in C_range:
    clf = SVC(kernel="rbf",C=i,gamma = 0.012742749857031322,cache_size=5000).fit(Xtrain,Ytrain)
    score.append(clf.score(Xtest,Ytest))
    
print(max(score), C_range[score.index(max(score))])
plt.plot(C_range,score)
plt.show()

输出结果为:0.9824561403508771 6.130408163265306

既然最高的得分所对应的C值是6,那么我们可以在5-7之间进一步细化,看能否找到一个更好的局部最优:

python 复制代码
#进一步细化
score = []
C_range = np.linspace(5,7,50)
for i in C_range:
    clf = SVC(kernel="rbf",C=i,gamma = 
0.012742749857031322,cache_size=5000).fit(Xtrain,Ytrain)
    score.append(clf.score(Xtest,Ytest))
    
print(max(score), C_range[score.index(max(score))])
plt.plot(C_range,score)
plt.show()

输出结果为:0.9824561403508771 5.938775510204081

可以看到,98.2456%就是我们最好的得分。

相关推荐
BOF_dcb6 分钟前
【无标题】
pytorch·深度学习·机器学习
V1ncent_xuan15 分钟前
坐标转化Halcon&Opencv
人工智能·opencv·计算机视觉
咚咚王者24 分钟前
人工智能之核心基础 机器学习 第一章 基础概述
人工智能·机器学习
StarChainTech29 分钟前
电动车租赁中的智能管理:电子围栏技术如何改变出行行业
大数据·人工智能·微信小程序·小程序·团队开发·软件需求·共享经济
阿达_优阅达1 小时前
HubSpot 营销指南 | AI 时代,如何同时做好 SEO 与 AEO?
人工智能·ai·seo·营销自动化·hubspot·aeo·sales
kkce2 小时前
vsping 推出海外检测节点的核心目的
大数据·网络·人工智能
bin91532 小时前
当AI优化搜索引擎算法:Go初级开发者的创意突围实战指南
人工智能·算法·搜索引擎·工具·ai工具
人工智能技术咨询.2 小时前
深度学习—卷积神经网络
人工智能
机器之心2 小时前
Manus被收购,智谱也定了8天后上市
人工智能·openai