找到【SVM】中最优的惩罚项系数C

因为本来SVM是想找到间隔最大的分割面,所以C越大,SVC会选择边际更小的,能够更好的分类所有训练点的决策边界,不过模型的训练时间也会越长。如果C的设定值较小,那SVC会尽量最大化边界,决策功能会更简单,但代价是训练的准确度。

我们先来调线性核函数:

python 复制代码
#调线性核函数
score = []
C_range = np.linspace(0.01,30,50)
for i in C_range:
    clf = SVC(kernel="linear",C=i,cache_size=5000).fit(Xtrain,Ytrain)
    score.append(clf.score(Xtest,Ytest))
print(max(score), C_range[score.index(max(score))])
plt.plot(C_range,score)
plt.show()

输出结果为:0.9766081871345029 1.2340816326530613

可以看到准确率最高是97%以上。接下来我们来看看在rbf上的结果:

python 复制代码
score = []
C_range = np.linspace(0.01,30,50)
for i in C_range:
    clf = SVC(kernel="rbf",C=i,gamma = 0.012742749857031322,cache_size=5000).fit(Xtrain,Ytrain)
    score.append(clf.score(Xtest,Ytest))
    
print(max(score), C_range[score.index(max(score))])
plt.plot(C_range,score)
plt.show()

输出结果为:0.9824561403508771 6.130408163265306

既然最高的得分所对应的C值是6,那么我们可以在5-7之间进一步细化,看能否找到一个更好的局部最优:

python 复制代码
#进一步细化
score = []
C_range = np.linspace(5,7,50)
for i in C_range:
    clf = SVC(kernel="rbf",C=i,gamma = 
0.012742749857031322,cache_size=5000).fit(Xtrain,Ytrain)
    score.append(clf.score(Xtest,Ytest))
    
print(max(score), C_range[score.index(max(score))])
plt.plot(C_range,score)
plt.show()

输出结果为:0.9824561403508771 5.938775510204081

可以看到,98.2456%就是我们最好的得分。

相关推荐
一切尽在,你来4 分钟前
AI 大模型应用开发前置知识:Python 类型注解全教程
人工智能·python·ai编程
TechnologyStar8 分钟前
智谱autoglm提供的免费OpenClaw服务器
人工智能
CoderJia程序员甲12 分钟前
GitHub 热榜项目 - 日榜(2026-02-19)
人工智能·ai·大模型·github·ai教程
qq_4542450315 分钟前
计算机与AI领域中的“上下文”:多维度解析
数据结构·人工智能·分类
callJJ18 分钟前
Spring AI Tool Calling(工具调用)详解——让大模型拥有“动手能力“
java·人工智能·spring·spring ai·tool calling
琅琊榜首202019 分钟前
AI赋能内容创作:小说改编短剧全流程实操指南
人工智能
minhuan20 分钟前
大模型应用:最优路径规划实践:A*算法找最优解,大模型做自然语言解释.91
人工智能·astar算法·混元大模型·最优路径规划
fpcc29 分钟前
AI和大模型之一介绍
人工智能·cuda
小雨中_32 分钟前
2.9 TRPO 与 PPO:从“信赖域约束”到“近端裁剪”的稳定策略优化
人工智能·python·深度学习·机器学习·自然语言处理
艾醒(AiXing-w)32 分钟前
打破信息差——2026年2月19日AI热点新闻速览
人工智能