找到【SVM】中最优的惩罚项系数C

因为本来SVM是想找到间隔最大的分割面,所以C越大,SVC会选择边际更小的,能够更好的分类所有训练点的决策边界,不过模型的训练时间也会越长。如果C的设定值较小,那SVC会尽量最大化边界,决策功能会更简单,但代价是训练的准确度。

我们先来调线性核函数:

python 复制代码
#调线性核函数
score = []
C_range = np.linspace(0.01,30,50)
for i in C_range:
    clf = SVC(kernel="linear",C=i,cache_size=5000).fit(Xtrain,Ytrain)
    score.append(clf.score(Xtest,Ytest))
print(max(score), C_range[score.index(max(score))])
plt.plot(C_range,score)
plt.show()

输出结果为:0.9766081871345029 1.2340816326530613

可以看到准确率最高是97%以上。接下来我们来看看在rbf上的结果:

python 复制代码
score = []
C_range = np.linspace(0.01,30,50)
for i in C_range:
    clf = SVC(kernel="rbf",C=i,gamma = 0.012742749857031322,cache_size=5000).fit(Xtrain,Ytrain)
    score.append(clf.score(Xtest,Ytest))
    
print(max(score), C_range[score.index(max(score))])
plt.plot(C_range,score)
plt.show()

输出结果为:0.9824561403508771 6.130408163265306

既然最高的得分所对应的C值是6,那么我们可以在5-7之间进一步细化,看能否找到一个更好的局部最优:

python 复制代码
#进一步细化
score = []
C_range = np.linspace(5,7,50)
for i in C_range:
    clf = SVC(kernel="rbf",C=i,gamma = 
0.012742749857031322,cache_size=5000).fit(Xtrain,Ytrain)
    score.append(clf.score(Xtest,Ytest))
    
print(max(score), C_range[score.index(max(score))])
plt.plot(C_range,score)
plt.show()

输出结果为:0.9824561403508771 5.938775510204081

可以看到,98.2456%就是我们最好的得分。

相关推荐
北数云19 分钟前
北数云v4.6.4 版本上线及域名切换通知
人工智能·开源·gpu算力·模型
小程故事多_8023 分钟前
从零吃透PyTorch,最易懂的入门全指南
人工智能·pytorch·python
AI科技星25 分钟前
统一场论中电场的几何起源:基于立体角变化率的第一性原理推导与验证
服务器·人工智能·线性代数·算法·矩阵·生活
晓晓不觉早27 分钟前
2026 AI 垂直领域展望:从通用到专精,场景深耕成破局关键
人工智能
lifetime‵(+﹏+)′27 分钟前
5060显卡Windows配置Anaconda中的CUDA及Pytorch
人工智能·pytorch·windows
老鱼说AI27 分钟前
万字长文警告!一次性搞定GAN(生成对抗网络):从浅入深原理级精析 + PyTorch代码逐行讲解实现
人工智能·深度学习·神经网络·生成对抗网络·计算机视觉·ai作画·超分辨率重建
START_GAME29 分钟前
深度学习环境配置:PyTorch、CUDA和Python版本选择
人工智能·pytorch·深度学习
Chlittle_rabbit31 分钟前
50系显卡在Ubuntu22.04环境下安装nvidia驱动+CUDA+cuDNN,anaconda下配置pytorch环境一站式解决方案(2025年7月版本)已完结!!!
linux·人工智能·pytorch·深度学习·ubuntu
大模型真好玩1 小时前
LangGraph智能体开发设计模式(三)——LangGraph多智能体设计模式:主管架构与分层架构
人工智能·langchain·agent
皇族崛起1 小时前
【视觉多模态】- 3D建模尝试 I (广场3D建模,失败)
数据库·人工智能·3d·性能优化