找到【SVM】中最优的惩罚项系数C

因为本来SVM是想找到间隔最大的分割面,所以C越大,SVC会选择边际更小的,能够更好的分类所有训练点的决策边界,不过模型的训练时间也会越长。如果C的设定值较小,那SVC会尽量最大化边界,决策功能会更简单,但代价是训练的准确度。

我们先来调线性核函数:

python 复制代码
#调线性核函数
score = []
C_range = np.linspace(0.01,30,50)
for i in C_range:
    clf = SVC(kernel="linear",C=i,cache_size=5000).fit(Xtrain,Ytrain)
    score.append(clf.score(Xtest,Ytest))
print(max(score), C_range[score.index(max(score))])
plt.plot(C_range,score)
plt.show()

输出结果为:0.9766081871345029 1.2340816326530613

可以看到准确率最高是97%以上。接下来我们来看看在rbf上的结果:

python 复制代码
score = []
C_range = np.linspace(0.01,30,50)
for i in C_range:
    clf = SVC(kernel="rbf",C=i,gamma = 0.012742749857031322,cache_size=5000).fit(Xtrain,Ytrain)
    score.append(clf.score(Xtest,Ytest))
    
print(max(score), C_range[score.index(max(score))])
plt.plot(C_range,score)
plt.show()

输出结果为:0.9824561403508771 6.130408163265306

既然最高的得分所对应的C值是6,那么我们可以在5-7之间进一步细化,看能否找到一个更好的局部最优:

python 复制代码
#进一步细化
score = []
C_range = np.linspace(5,7,50)
for i in C_range:
    clf = SVC(kernel="rbf",C=i,gamma = 
0.012742749857031322,cache_size=5000).fit(Xtrain,Ytrain)
    score.append(clf.score(Xtest,Ytest))
    
print(max(score), C_range[score.index(max(score))])
plt.plot(C_range,score)
plt.show()

输出结果为:0.9824561403508771 5.938775510204081

可以看到,98.2456%就是我们最好的得分。

相关推荐
Baihai_IDP4 分钟前
RAG 文档解析工具选型指南
人工智能·llm
嘟嘟喂嘟嘟吖18 分钟前
AI对口型唱演:科技赋能,开启虚拟歌者新篇章
人工智能·科技
十二测试录21 分钟前
AI 驱动研发变革:技术突破与行业落地实践全景
人工智能·ai·aigc
像风一样自由202027 分钟前
五种算法详解(SVM / Logistic Regression / kNN / Random Forest / HistGradientBoosting)
算法·随机森林·支持向量机
张较瘦_29 分钟前
[论文阅读] 人工智能 + 软件工程 | 当AI成为文学研究员:Agentic DraCor如何用MCP解锁戏剧数据分析
论文阅读·人工智能·软件工程
Melody205033 分钟前
diffusion model(1.4) 相关论文阅读清单
人工智能
平行绳41 分钟前
啊?我的 Coze 触发器怎么没生效?答案在这里
人工智能·coze
云布道师1 小时前
AI时代下阿里云基础设施的稳定性架构揭秘
人工智能·阿里云·架构
胡耀超1 小时前
机器学习数学基础与商业实践指南:从统计显著性到预测能力的认知升级
人工智能·python·机器学习·数据挖掘·数据分析·数据科学·统计学
Caaacy_YU2 小时前
多模态大模型研究每日简报【2025-08-21】
论文阅读·人工智能·机器学习·计算机视觉