找到【SVM】中最优的惩罚项系数C

因为本来SVM是想找到间隔最大的分割面,所以C越大,SVC会选择边际更小的,能够更好的分类所有训练点的决策边界,不过模型的训练时间也会越长。如果C的设定值较小,那SVC会尽量最大化边界,决策功能会更简单,但代价是训练的准确度。

我们先来调线性核函数:

python 复制代码
#调线性核函数
score = []
C_range = np.linspace(0.01,30,50)
for i in C_range:
    clf = SVC(kernel="linear",C=i,cache_size=5000).fit(Xtrain,Ytrain)
    score.append(clf.score(Xtest,Ytest))
print(max(score), C_range[score.index(max(score))])
plt.plot(C_range,score)
plt.show()

输出结果为:0.9766081871345029 1.2340816326530613

可以看到准确率最高是97%以上。接下来我们来看看在rbf上的结果:

python 复制代码
score = []
C_range = np.linspace(0.01,30,50)
for i in C_range:
    clf = SVC(kernel="rbf",C=i,gamma = 0.012742749857031322,cache_size=5000).fit(Xtrain,Ytrain)
    score.append(clf.score(Xtest,Ytest))
    
print(max(score), C_range[score.index(max(score))])
plt.plot(C_range,score)
plt.show()

输出结果为:0.9824561403508771 6.130408163265306

既然最高的得分所对应的C值是6,那么我们可以在5-7之间进一步细化,看能否找到一个更好的局部最优:

python 复制代码
#进一步细化
score = []
C_range = np.linspace(5,7,50)
for i in C_range:
    clf = SVC(kernel="rbf",C=i,gamma = 
0.012742749857031322,cache_size=5000).fit(Xtrain,Ytrain)
    score.append(clf.score(Xtest,Ytest))
    
print(max(score), C_range[score.index(max(score))])
plt.plot(C_range,score)
plt.show()

输出结果为:0.9824561403508771 5.938775510204081

可以看到,98.2456%就是我们最好的得分。

相关推荐
Deepoch2 分钟前
Deepoc具身模型开发板:半导体制造智能化的技术引擎
人工智能·开发板·半导体·具身模型·deepoc
凤希AI伴侣6 分钟前
凤希AI提出FXPA2P:下一代点对点AI服务架构-2026年1月14日
人工智能·架构·凤希ai伴侣
科技与数码11 分钟前
中小企业AI知识权威构建:北京鲲鹏伟业的GEO赋能之道——GEO公司助力企业数字化转型
人工智能
阿湯哥17 分钟前
Workflow or Agent+Skill:AI 工作流的进化抉择
人工智能
阿坤带你走近大数据22 分钟前
如何解决农业数据的碎片化问题
大数据·人工智能·rag·大模型应用
Modeler·X24 分钟前
关系型与非关系型数据库终极对决
数据库·人工智能
颜淡慕潇27 分钟前
动态代理赋能:高效爬取沃尔玛海量商品信息与AI分析实战
人工智能·后端
LOnghas12111 小时前
长须鲸目标检测_YOLO13-C3k2-OREPA改进方案实战
人工智能·目标检测·计算机视觉
Hcoco_me1 小时前
大模型面试题75:讲解一下GRPO的数据回放
人工智能·深度学习·算法·机器学习·vllm
赫尔·普莱蒂科萨·帕塔1 小时前
“共享”机器人
人工智能·机器人·agi