Revisiting Large Language Models as Zero-shot Relation Extractors

本文是LLM系列文章,针对《Revisiting Large Language Models as Zero-shot Relation Extractors》的翻译。

修改大型语言模型作为零样本关系提取器

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 问题定义](#3 问题定义)
  • [4 提示设计](#4 提示设计)
  • [5 实验](#5 实验)
  • [6 结论](#6 结论)

摘要

即使在零样本设置下,关系提取(RE)也始终涉及一定程度的标记或未标记数据。最近的研究表明,只要给出自然语言提示,大型语言模型(LLM)就可以很好地转换到开箱即用的新任务中,这提供了在没有任何数据和参数调整的情况下从文本中提取关系的可能性。这项工作的重点是探索LLM,如ChatGPT,作为零样本关系提取器。一方面,我们分析了现有RE提示的缺点,并试图结合最近的提示技术,如思想链(CoT)来改进零样本RE。我们提出了总结和询问(SUMASK)提示,这是一种简单的提示,使用LLM递归地将RE输入转换为有效的问答(QA)格式。另一方面,我们在各种基准和设置上进行了全面的实验,以研究LLM在零样本RE上的能力。具体而言,我们有以下发现:(i)SUMASK在不同的模型大小、基准和设置下持续显著地提高了LLM的性能;(ii)与零样本和完全监督的方法相比,使用ChatGPT的零样本提示实现了具有竞争力或优越的结果;(iii)LLM在提取重叠关系方面提供了有希望的性能;(iv)不同关系的表现差异很大。与小型语言模型不同,LLM在处理挑战方面是有效的------没有上述(NoTA)关系。

1 引言

2 相关工作

3 问题定义

4 提示设计

5 实验

6 结论

这项工作对基于提示的LLM的零样本RE进行了全面的研究。除了VANILLA提示,我们还介绍了一种新颖的SUMASK提示,以充分探索LLM的力量。我们在六个基准上的实验证明了LLM在零样本RE中的能力。此外,我们能够回答上述三个问题。最近的提示技术(如CoT)显著改进了零样本RE提示。与最先进的关系分类模型相比,正确指导的LLM不仅提供了具有竞争力或优越的结果,而且对于零样本重叠RE也很有希望。

相关推荐
McQueen_LT3 分钟前
聊天室Python脚本——ChatGPT,好用
开发语言·python·chatgpt
云卓SKYDROID7 分钟前
无人机投屏技术解码过程详解!
人工智能·5g·音视频·无人机·科普·高科技·云卓科技
zy_destiny14 分钟前
【YOLOv12改进trick】三重注意力TripletAttention引入YOLOv12中,实现遮挡目标检测涨点,含创新点Python代码,方便发论文
网络·人工智能·python·深度学习·yolo·计算机视觉·三重注意力
自由的晚风15 分钟前
深度学习在SSVEP信号分类中的应用分析
人工智能·深度学习·分类
大数据追光猿16 分钟前
【大模型技术】LlamaFactory 的原理解析与应用
人工智能·python·机器学习·docker·语言模型·github·transformer
Start_Present28 分钟前
Pytorch 第七回:卷积神经网络——VGG模型
pytorch·python·神经网络·cnn·分类算法
朴拙数科28 分钟前
1:1精准还原!用Python+Adobe Acrobat DC实现PDF转Word全自动化
python·pdf·word
supermodule28 分钟前
基于flask的一个数据展示网页
后端·python·flask
范哥来了29 分钟前
python文本处理pdfminer库安装与使用
linux·开发语言·python
玩电脑的辣条哥31 分钟前
大模型LoRA微调训练原理是什么?
人工智能·lora·微调