怎么剔除掉六十岁(退休)以上的人(python自动化办公)

怎么剔除掉六十岁(退休)以上的人(python自动化办公)

需求分析:

python 复制代码
1.本代码的要求是从表1中根据姓名合并表2
2.删除掉为空的人数 ,后面再合并
3.表格内的19971111,所以首先需要得到年份
4.找出大于60岁的名单,输出名单,并删除掉60岁以上的人员

代码:

python 复制代码
    def get_le_six(self):
        # 读取两份表格文件
        table1 = pd.read_excel("coding_3.xlsx", sheet_name='Sheet1')  # 第一份表格
        table2 = pd.read_excel("coding_3.xlsx", sheet_name='Sheet2')  # 第二份表格

        # 合并两份表格,保留第一份表格的所有信息
        merged_table = pd.merge(table1, table2, on='姓名', how='left')

        # 找出匹配为空的行
        missing_matches = merged_table[merged_table['出生日期'].isna()]

        # 删除匹配为空的行
        merged_table = merged_table.dropna(subset=['出生日期'])

        # 根据出生日期计算每个人的年龄
        current_year = 2023
        merged_table['出生日期'] = merged_table['出生日期'].astype(str)
        merged_table['年龄'] = current_year - merged_table['出生日期'].str[:4].astype(int)
        # 找出大于六十岁的人名单
        older_than_sixty = merged_table[merged_table['年龄'] > 60]['姓名']

        # 打印大于六十岁的人名单
        print("大于六十岁的人名单:")
        print(older_than_sixty)

        # 从新表格中删除大于六十岁的人
        merged_table = merged_table[merged_table['年龄'] <= 60]

        # 合并匹配为空的人的姓名信息
        result = pd.concat([missing_matches, merged_table])

        # 保存结果为表格文件
        result.to_excel("missing_names.xlsx", index=False)
        merged_table.to_excel("new_table.xlsx", index=False)

重要知识点

json 复制代码
isna()
作用:判断是否为空值,返回True或False
(1)反义函数:notna()
(2)与isnull()的用法相同
相关推荐
Python当打之年4 小时前
【59 Pandas+Pyecharts | 淘宝华为手机商品数据分析可视化】
华为·智能手机·数据分析·pandas·数据可视化
Python当打之年21 小时前
【62 Pandas+Pyecharts | 智联招聘大数据岗位数据分析可视化】
大数据·python·数据分析·pandas·数据可视化
liuweidong08021 天前
【Pandas】pandas DataFrame replace
pandas
一晌小贪欢1 天前
【Python办公】使用pandas批量读取csv保存为Excel
python·excel·pandas·读取excel·python办公·excel转csv
仟濹2 天前
「pandas 与 numpy」数据分析与处理全流程【数据分析全栈攻略:爬虫+处理+可视化+报告】
大数据·python·数据分析·numpy·pandas
vvilkim3 天前
深入解析 Pandas 核心数据结构:Series 与 DataFrame
数据结构·pandas
liuweidong08023 天前
【Pandas】pandas DataFrame notna
pandas
pythonqiang93 天前
Pandas:你的数据分析瑞士军刀![特殊字符]✨
其他·数据挖掘·数据分析·pandas
一个天蝎座 白勺 程序猿4 天前
Python爬虫(53)Python爬虫数据清洗与分析实战:Pandas+Great Expectations构建可信数据管道
爬虫·python·pandas
vvilkim5 天前
全面掌握Pandas时间序列处理:从基础到实战
pandas