基于CLIP的图像分类、语义分割和目标检测

OpenAI CLIP模型是一个创造性的突破; 它以与文本相同的方式处理图像。 令人惊讶的是,如果进行大规模训练,效果非常好。

在线工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 3D场景编辑器

CLIP 将图像视为一系列不重叠的补丁,每个补丁都是一个视觉标记(类似于 NLP 中的文本标记或单词)。 因此,图像只是一系列视觉标记,可以使用旧的转换器像文本一样进行处理。

训练数据是从网络上抓取的图像标题对。 CLIP 模型经过训练,可以使用对比损失将图像/文本转换为向量嵌入。 经过训练的 CLIP 模型将在同一向量空间中生成图像和文本嵌入,使我们能够通过计算 (i) 图像嵌入和 (ii) 文本嵌入之间的余弦相似度来计算 (i) 图像和 (ii) 一段文本的相似度。

将任意图像/文本转换为矢量嵌入正在成为一种基本的人工智能原语。 它免费解锁了许多人工智能功能,而这些功能之前需要数周/数月的训练数据收集和模型训练工作。 实际上,它允许对许多用例进行零样本预测,例如 图像分类、图像分割与目标检测。本文将介绍如何利用CLIP实现这三种图像预测任务。

1、图像分类

给定 (i) 一张图像和 (ii) 可能的类(文本)列表,我们要求 CLIP 生成 (i) 图像嵌入和 (ii) 类(文本)嵌入。 预测的类别是其嵌入最接近图像嵌入的类别。

以下是改编自 zero-shot-prediction 的伪代码:

复制代码
classes = ["credit card", "driver's license", "passport"]

model, preprocess = clip.load('ViT-B/32')

image_input = preprocess(image)
text_inputs = torch.cat([clip.tokenize(f"a photo of a {c}") for c in classes])

image_features = model.encode_image(image_input)
text_features = model.encode_text(text_inputs)

# Pick the most similar class for the image
similarity = (100.0 * image_features @ text_features.T).softmax(dim=-1)

2、图像分割

同样,CLIPSeg 是基于 CLIP 的图像分割模型。 给定(i)图像和(ii)任意文本(例如"煎饼"),它可以找到与图像中文本相对应的轮廓。

CLIPSeg 上的一个优秀的 Hugging Face 博客:使用 CLIPSeg 进行零样本图像分割

3、对象检测

最后,OWL-ViT 是一个基于 CLIP 的对象检测模型。 给定(i)图像和(ii)任意文本(例如"煎饼"),它可以找到与图像中的文本相对应的边界框(矩形)。

点击这里查看HF上的 OWL-ViT 演示

4、CLIP加速产品迭代速度

至关重要的是,没有模型训练步骤! 此外,CLIP可以进行图像分类、图像分割和任意类别的对象检测(开放词汇设置)。 使用自定义模型,每次我们必须预测新类别时,我们都需要收集新类别(标签)的训练数据,并训练新模型。 这是一个非常耗时的过程,通常需要几周到几个月的时间。 有了 CLIP,所有这些步骤都被消除了; CLIP 可以预测任意类别!

因此,对于能够容忍潜在较高错误率的用例,基于 CLIP 的模型可以加快产品迭代速度,而只有对于精度要求较高的用例才需要训练自定义模型。


原文链接:用CLIP分类、分割和检测 --- BimAnt

相关推荐
云端FFF17 小时前
论文理解 【LLM-回归】—— Decoding-based Regression
人工智能·数据挖掘·回归
qq_436962181 天前
奥威BI金蝶数据分析可视化方案:200+开箱即用报表驱动智能决策
信息可视化·数据挖掘·数据分析
IT小哥哥呀1 天前
基于深度学习的数字图像分类实验与分析
人工智能·深度学习·分类
啦啦啦在冲冲冲1 天前
mse和交叉熵loss,为什么分类问题不用 mse
人工智能·分类·数据挖掘
~~李木子~~1 天前
图像分类项目:Fashion-MNIST 分类(SimpleCNN )
人工智能·分类·数据挖掘
通信小呆呆2 天前
分布式雷达 vs 多基地雷达:同频共振的“合唱团”和“乐队”
分布式·目标检测·信息与通信·信号处理·计算成像
搞科研的小刘选手2 天前
【早稻田大学主办】2026年第三届人工智能与未来教育国际学术会议(AIFE 2026)
人工智能·机器学习·数据挖掘·机器人·未来教育·远程教育·移动学习
码农阿树2 天前
Java 离线视频目标检测性能优化:从 Graphics2D 到 OpenCV 原生绘图的 20 倍性能提升实战
java·yolo·目标检测·音视频
fanstuck2 天前
开源项目重构我们应该怎么做-以 SQL 血缘系统开源项目为例
数据库·sql·重构·数据挖掘·数据治理
Bugman.2 天前
分类任务-三个重要网络模型
深度学习·机器学习·分类