4.2 onnx简化模型结构

前言

对已有的onnx结构,进行简化操作,onnx提供两种常规操作

方式一

假设为 model.onnx, 比较简单粗暴

复制代码
# 简化
onnxsim model.onnx model_sim.onnx

方式二

稍微复杂点,代码有点多

cpp 复制代码
import onnx
import argparse
from onnxsim import simplify

# Simplify
def simplify_model(args):
    onnx_model = onnx.load(args.origin_model)
    model_simp, check = simplify(onnx_model)
    model_simp = onnx.shape_inference.infer_shapes(model_simp)
    onnx.save(model_simp, args.output_model)
    print("  Simplify onnx Done.")

# 检查onnx计算图
def checknet(model_path):
    model = onnx.load(model_path)
    onnx.checker.check_model(model)  
    # Print a human readable representation of the graph
    # print(onnx.helper.printable_graph(model.graph))
    
def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--origin_model", type=str)
    parser.add_argument("--output_model", type=str)
    args = parser.parse_args()
    return args

if __name__ == "__main__":
    args = parse_args()
    simplify_model(args

总结

  • 两种本质上没用改变,都是通过调用onnxsim进行操作
  • 看个人使用时机
相关推荐
悟道|养家1 小时前
广域网往返(WAN RTT)优化案例(6)
性能优化
没有bug.的程序员2 小时前
Java 并发容器深度剖析:ConcurrentHashMap 源码解析与性能优化
java·开发语言·性能优化·并发·源码解析·并发容器
没有bug.的程序员8 小时前
HashMap 源码深度剖析:红黑树转换机制与高并发性能陷阱
java·性能优化·并发编程·源码分析·红黑树·hashmap·技术深度
chaofan9808 小时前
高并发环境下 API 性能优化实践 —— API 接口技术解析
性能优化
砚边数影9 小时前
Java基础强化(三):多线程并发 —— AI 数据批量读取性能优化
java·数据库·人工智能·ai·性能优化·ai编程
霖霖总总9 小时前
[小技巧35]深入 InnoDB 的 LRU 机制:从原理到调优
数据库·mysql·性能优化
独自归家的兔9 小时前
Java性能优化实战:从基础调优到系统效率倍增 -2
java·开发语言·性能优化
独自归家的兔9 小时前
Java性能优化实战:从基础调优到系统效率倍增 - 1
java·开发语言·性能优化
C++chaofan13 小时前
JUC并发编程:LockSupport.park() 与 unpark() 深度解析
java·开发语言·c++·性能优化·高并发·juc
冬奇Lab1 天前
稳定性性能系列之十六——车机特定场景:黑卡死问题分析与排查实战
android·性能优化