逐次变分模态分解(Sequential Variational Mode Decomposition,SVMD)(附代码)

代码原理

逐次变分模态分解(Sequential Variational Mode Decomposition,SVMD)是一种用于信号处理和数据分析的方法。它可以将复杂的信号分解为一系列模态函数,每个模态函数代表了信号中的一个特定频率成分。SVMD的主要目标是提取信号中的不同频率成分,并将其重构为原始信号。

SVMD的基本原理是通过变分模态分解的方式将信号分解为多个模态函数。在每个迭代步骤中,SVMD通过最小化信号与模态函数之间的差异来更新模态函数。这个过程会不断重复,直到收敛为止。最终得到的模态函数可以用于重构原始信号。

SVMD的另一个关键特点是逐次分解。在每个迭代步骤中,SVMD会从信号中提取出一个主要的频率成分,并将其从信号中剔除。这样,每个迭代步骤都会提取出信号中的一个频率成分,直到所有的频率成分都被提取完毕。这种逐次分解的方式可以更好地捕捉到信号中的不同频率成分。

SVMD在信号处理和数据分析中有广泛的应用。它可以用于去噪、特征提取、频谱分析等多个领域。通过将信号分解为模态函数,SVMD可以更好地理解和描述信号的频率特征,这对于信号处理和数据分析来说是非常重要的。

SVMD的数据重构是将分解得到的模态函数重新组合成原始信号的过程。通过将每个模态函数加权相加,可以得到重构后的信号。这个过程可以用于还原原始信号的频率特征,并且可以根据需要进行进一步的分析和处理。

总之,逐次变分模态分解是一种用于信号处理和数据分析的有效方法。它可以将复杂的信号分解为多个模态函数,并且可以通过数据重构将其重新组合成原始信号。SVMD的应用领域广泛,对于理解和描述信号的频率特征非常有帮助。通过深入研究和应用SVMD,我们可以更好地处理和分析各种类型的信号和数据。

代码效果图

本文代码:阿里云盘分享

获取代码请关注MATLAB科研小白的个人公众号(即文章下方二维码),并回复SVMD .

公众号致力于解决找代码难,写代码怵。各位有什么急需的代码,欢迎后台留言~不定时更新科研技巧类推文,可以一起探讨科研,写作,文献,代码等诸多学术问题,我们一起进步。

相关推荐
AI极客菌44 分钟前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭1 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^1 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246662 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k2 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫2 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班2 小时前
复现LLM:带你从零认识语言模型
人工智能·语言模型
数据猎手小k2 小时前
AndroidLab:一个系统化的Android代理框架,包含操作环境和可复现的基准测试,支持大型语言模型和多模态模型。
android·人工智能·机器学习·语言模型
YRr YRr2 小时前
深度学习:循环神经网络(RNN)详解
人工智能·rnn·深度学习
sp_fyf_20242 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘