caffe搭建squeezenet网络的整套工程

之前用pytorch构建了squeezenet,个人觉得pytorch是最好用的,但是有的工程就是需要caffe结构的,所以本篇也用caffe构建一个squeezenet网络。

数据处理

首先要对数据进行处理,跟pytorch不同,pytorch读取数据只需要给数据集所在目录即可直接从中读取数据,而caffe需要一个包含每张图片的绝对路径以及所在类别的txt文件,从中读取数据。写一个生成次txt文件的脚本:

python 复制代码
import os
import random

folder = 'cotta'  # 数据集目录相对路径
names = os.listdir(folder)

f1 = open('/train_txt/train_cotta.txt', 'a')  # 生成的txt地址
f2 = open('/train_txt/test_water_workcloth.txt', 'a')

for name in names:
    imgnames = os.listdir(folder + '/' + name)
    random.shuffle(imgnames)
    numimg = len(imgnames)
    for i in range(numimg):
        f1.write('%s %s\n' % (folder + '/' + name + '/' + imgnames[i], name[0]))
        # if i < int(0.9*numimg):
        #     f1.write('%s %s\n'%(folder + '/' + name + '/' + imgnames[i], name[0]))
        # else:
        #     f2.write('%s %s\n'%(folder + '/' + name + '/' + imgnames[i], name[0]))
# f2.close()
f1.close()

数据集的目录也要跟pytorch的一致,一个类的数据放在一个目录中,目录名为类名。且脚本与该目录同级。

运行脚本后生成的txt内容如下:

python 复制代码
/cotta/0_other/0_1_391_572_68_68.jpg 0
/cotta/1_longSleeves/9605_1_5_565_357_82_70.jpg 1
/cotta/2_cotta/713_0.99796_1_316_162_96_87.jpg 2
......
图片相对路径 图片所属类别

网络结构配置文件

trainval.prototxt

xml 复制代码
layer {
     name: "data"
     type: "ImageData"
     top: "data"
     top: "label"
     transform_param {
       mirror: true
       crop_size: 96
     }
    image_data_param {
       source: "/train_txt/train_cotta.txt"   # 生成的txt的相对路径
       root_folder: "/data/"   # 存放数据集目录的路径
       batch_size: 64
       shuffle: true
	   new_height: 96
	   new_width: 96
     }
   }
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  convolution_param {
    num_output: 96
    kernel_size: 3
    stride: 1
    pad: 1
    weight_filler {
      type: "xavier"
    }
  }
}

layer {  
  name: "BatchNorm1"  
  type: "BatchNorm" 
  bottom: "conv1"  
  top: "BatchNorm1"   
}

layer {
  name: "relu_conv1"
  type: "ReLU"
  bottom: "BatchNorm1"
  top: "BatchNorm1"
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "BatchNorm1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "fire2/squeeze1x1"
  type: "Convolution"
  bottom: "pool1"
  top: "fire2/squeeze1x1"
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}

layer {  
  name: "fire2/bn_squeeze1x1"  
  type: "BatchNorm" 
  bottom: "fire2/squeeze1x1"  
  top: "fire2/bn_squeeze1x1"   
}

layer {
  name: "fire2/relu_squeeze1x1"
  type: "ReLU"
  bottom: "fire2/bn_squeeze1x1"
  top: "fire2/bn_squeeze1x1"
}
layer {
  name: "fire2/expand1x1"
  type: "Convolution"
  bottom: "fire2/bn_squeeze1x1"
  top: "fire2/expand1x1"
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}

layer {  
  name: "fire2/bn_expand1x1"  
  type: "BatchNorm" 
  bottom: "fire2/expand1x1"  
  top: "fire2/bn_expand1x1"   
}

layer {
  name: "fire2/relu_expand1x1"
  type: "ReLU"
  bottom: "fire2/bn_expand1x1"
  top: "fire2/bn_expand1x1"
}
layer {
  name: "fire2/expand3x3"
  type: "Convolution"
  bottom: "fire2/bn_expand1x1"
  top: "fire2/expand3x3"
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
  }
}

layer {  
  name: "fire2/bn_expand3x3"  
  type: "BatchNorm" 
  bottom: "fire2/expand3x3"  
  top: "fire2/bn_expand3x3"   
}

layer {
  name: "fire2/relu_expand3x3"
  type: "ReLU"
  bottom: "fire2/bn_expand3x3"
  top: "fire2/bn_expand3x3"
}
layer {
  name: "fire2/concat"
  type: "Concat"
  bottom: "fire2/bn_expand1x1"
  bottom: "fire2/bn_expand3x3"
  top: "fire2/concat"
}

#fire2 ends: 128 channels
layer {
  name: "fire3/squeeze1x1"
  type: "Convolution"
  bottom: "fire2/concat"
  top: "fire3/squeeze1x1"
  convolution_param {
    num_output: 16
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}

layer {  
  name: "fire3/bn_squeeze1x1"  
  type: "BatchNorm" 
  bottom: "fire3/squeeze1x1"  
  top: "fire3/bn_squeeze1x1"   
}

layer {
  name: "fire3/relu_squeeze1x1"
  type: "ReLU"
  bottom: "fire3/bn_squeeze1x1"
  top: "fire3/bn_squeeze1x1"
}
layer {
  name: "fire3/expand1x1"
  type: "Convolution"
  bottom: "fire3/bn_squeeze1x1"
  top: "fire3/expand1x1"
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}

layer {  
  name: "fire3/bn_expand1x1"  
  type: "BatchNorm" 
  bottom: "fire3/expand1x1"  
  top: "fire3/bn_expand1x1"   
}

layer {
  name: "fire3/relu_expand1x1"
  type: "ReLU"
  bottom: "fire3/bn_expand1x1"
  top: "fire3/bn_expand1x1"
}
layer {
  name: "fire3/expand3x3"
  type: "Convolution"
  bottom: "fire3/bn_expand1x1"
  top: "fire3/expand3x3"
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
  }
}

layer {  
  name: "fire3/bn_expand3x3"  
  type: "BatchNorm" 
  bottom: "fire3/expand3x3"  
  top: "fire3/bn_expand3x3"   
}

layer {
  name: "fire3/relu_expand3x3"
  type: "ReLU"
  bottom: "fire3/bn_expand3x3"
  top: "fire3/bn_expand3x3"
}
layer {
  name: "fire3/concat"
  type: "Concat"
  bottom: "fire3/bn_expand1x1"
  bottom: "fire3/bn_expand3x3"
  top: "fire3/concat"
}

#fire3 ends: 128 channels

layer {
  name: "bypass_23"
  type: "Eltwise"
  bottom: "fire2/concat"
  bottom: "fire3/concat"
  top: "fire3_EltAdd"
}


layer {
  name: "fire4/squeeze1x1"
  type: "Convolution"
  bottom: "fire3_EltAdd"
  top: "fire4/squeeze1x1"
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}

layer {  
  name: "fire4/bn_squeeze1x1"  
  type: "BatchNorm" 
  bottom: "fire4/squeeze1x1"  
  top: "fire4/bn_squeeze1x1"   
}

layer {
  name: "fire4/relu_squeeze1x1"
  type: "ReLU"
  bottom: "fire4/bn_squeeze1x1"
  top: "fire4/bn_squeeze1x1"
}
layer {
  name: "fire4/expand1x1"
  type: "Convolution"
  bottom: "fire4/bn_squeeze1x1"
  top: "fire4/expand1x1"
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}

layer {  
  name: "fire4/bn_expand1x1"  
  type: "BatchNorm" 
  bottom: "fire4/expand1x1"  
  top: "fire4/bn_expand1x1"   
}

layer {
  name: "fire4/relu_expand1x1"
  type: "ReLU"
  bottom: "fire4/bn_expand1x1"
  top: "fire4/bn_expand1x1"
}
layer {
  name: "fire4/expand3x3"
  type: "Convolution"
  bottom: "fire4/bn_expand1x1"
  top: "fire4/expand3x3"
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
  }
}

layer {  
  name: "fire4/bn_expand3x3"  
  type: "BatchNorm" 
  bottom: "fire4/expand3x3"  
  top: "fire4/bn_expand3x3"   
}

layer {
  name: "fire4/relu_expand3x3"
  type: "ReLU"
  bottom: "fire4/bn_expand3x3"
  top: "fire4/bn_expand3x3"
}
layer {
  name: "fire4/concat"
  type: "Concat"
  bottom: "fire4/bn_expand1x1"
  bottom: "fire4/bn_expand3x3"
  top: "fire4/concat"
}
#fire4 ends: 256 channels

layer {
  name: "pool4"
  type: "Pooling"
  bottom: "fire4/concat"
  top: "pool4"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
#fire4 ends: 256 channels / pooled
layer {
  name: "fire5/squeeze1x1"
  type: "Convolution"
  bottom: "pool4"
  top: "fire5/squeeze1x1"
  convolution_param {
    num_output: 32
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}

layer {  
  name: "fire5/bn_squeeze1x1"  
  type: "BatchNorm" 
  bottom: "fire5/squeeze1x1"  
  top: "fire5/bn_squeeze1x1"   
}

layer {
  name: "fire5/relu_squeeze1x1"
  type: "ReLU"
  bottom: "fire5/bn_squeeze1x1"
  top: "fire5/bn_squeeze1x1"
}
layer {
  name: "fire5/expand1x1"
  type: "Convolution"
  bottom: "fire5/bn_squeeze1x1"
  top: "fire5/expand1x1"
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}

layer {  
  name: "fire5/bn_expand1x1"  
  type: "BatchNorm" 
  bottom: "fire5/expand1x1"  
  top: "fire5/bn_expand1x1"   
}

layer {
  name: "fire5/relu_expand1x1"
  type: "ReLU"
  bottom: "fire5/bn_expand1x1"
  top: "fire5/bn_expand1x1"
}
layer {
  name: "fire5/expand3x3"
  type: "Convolution"
  bottom: "fire5/bn_expand1x1"
  top: "fire5/expand3x3"
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
  }
}

layer {  
  name: "fire5/bn_expand3x3"  
  type: "BatchNorm" 
  bottom: "fire5/expand3x3"  
  top: "fire5/bn_expand3x3"   
}

layer {
  name: "fire5/relu_expand3x3"
  type: "ReLU"
  bottom: "fire5/bn_expand3x3"
  top: "fire5/bn_expand3x3"
}
layer {
  name: "fire5/concat"
  type: "Concat"
  bottom: "fire5/bn_expand1x1"
  bottom: "fire5/bn_expand3x3"
  top: "fire5/concat"
}

#fire5 ends: 256 channels
layer {
  name: "bypass_45"
  type: "Eltwise"
  bottom: "pool4"
  bottom: "fire5/concat"
  top: "fire5_EltAdd"
}


layer {
  name: "fire6/squeeze1x1"
  type: "Convolution"
  bottom: "fire5_EltAdd"
  top: "fire6/squeeze1x1"
  convolution_param {
    num_output: 48
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}

layer {  
  name: "fire6/bn_squeeze1x1"  
  type: "BatchNorm" 
  bottom: "fire6/squeeze1x1"  
  top: "fire6/bn_squeeze1x1"   
}

layer {
  name: "fire6/relu_squeeze1x1"
  type: "ReLU"
  bottom: "fire6/bn_squeeze1x1"
  top: "fire6/bn_squeeze1x1"
}
layer {
  name: "fire6/expand1x1"
  type: "Convolution"
  bottom: "fire6/bn_squeeze1x1"
  top: "fire6/expand1x1"
  convolution_param {
    num_output: 192
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}

layer {  
  name: "fire6/bn_expand1x1"  
  type: "BatchNorm" 
  bottom: "fire6/expand1x1"  
  top: "fire6/bn_expand1x1"   
}

layer {
  name: "fire6/relu_expand1x1"
  type: "ReLU"
  bottom: "fire6/bn_expand1x1"
  top: "fire6/bn_expand1x1"
}
layer {
  name: "fire6/expand3x3"
  type: "Convolution"
  bottom: "fire6/bn_expand1x1"
  top: "fire6/expand3x3"
  convolution_param {
    num_output: 192
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
  }
}

layer {  
  name: "fire6/bn_expand3x3"  
  type: "BatchNorm" 
  bottom: "fire6/expand3x3"  
  top: "fire6/bn_expand3x3"   
}

layer {
  name: "fire6/relu_expand3x3"
  type: "ReLU"
  bottom: "fire6/bn_expand3x3"
  top: "fire6/bn_expand3x3"
}
layer {
  name: "fire6/concat"
  type: "Concat"
  bottom: "fire6/bn_expand1x1"
  bottom: "fire6/bn_expand3x3"
  top: "fire6/concat"
}
#fire6 ends: 384 channels

layer {
  name: "fire7/squeeze1x1"
  type: "Convolution"
  bottom: "fire6/concat"
  top: "fire7/squeeze1x1"
  convolution_param {
    num_output: 48
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}

layer {  
  name: "fire7/bn_squeeze1x1"  
  type: "BatchNorm" 
  bottom: "fire7/squeeze1x1"  
  top: "fire7/bn_squeeze1x1"   
}

layer {
  name: "fire7/relu_squeeze1x1"
  type: "ReLU"
  bottom: "fire7/bn_squeeze1x1"
  top: "fire7/bn_squeeze1x1"
}
layer {
  name: "fire7/expand1x1"
  type: "Convolution"
  bottom: "fire7/bn_squeeze1x1"
  top: "fire7/expand1x1"
  convolution_param {
    num_output: 192
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}

layer {  
  name: "fire7/bn_expand1x1"  
  type: "BatchNorm" 
  bottom: "fire7/expand1x1"  
  top: "fire7/bn_expand1x1"   
}

layer {
  name: "fire7/relu_expand1x1"
  type: "ReLU"
  bottom: "fire7/bn_expand1x1"
  top: "fire7/bn_expand1x1"
}
layer {
  name: "fire7/expand3x3"
  type: "Convolution"
  bottom: "fire7/bn_expand1x1"
  top: "fire7/expand3x3"
  convolution_param {
    num_output: 192
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
  }
}

layer {  
  name: "fire7/bn_expand3x3"  
  type: "BatchNorm" 
  bottom: "fire7/expand3x3"  
  top: "fire7/bn_expand3x3"   
}

layer {
  name: "fire7/relu_expand3x3"
  type: "ReLU"
  bottom: "fire7/bn_expand3x3"
  top: "fire7/bn_expand3x3"
}
layer {
  name: "fire7/concat"
  type: "Concat"
  bottom: "fire7/bn_expand1x1"
  bottom: "fire7/bn_expand3x3"
  top: "fire7/concat"
}
#fire7 ends: 384 channels
layer {
  name: "bypass_67"
  type: "Eltwise"
  bottom: "fire6/concat"
  bottom: "fire7/concat"
  top: "fire7_EltAdd"
}



layer {
  name: "fire8/squeeze1x1"
  type: "Convolution"
  bottom: "fire7_EltAdd"
  top: "fire8/squeeze1x1"
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}

layer {  
  name: "fire8/bn_squeeze1x1"  
  type: "BatchNorm" 
  bottom: "fire8/squeeze1x1"  
  top: "fire8/bn_squeeze1x1"   
}

layer {
  name: "fire8/relu_squeeze1x1"
  type: "ReLU"
  bottom: "fire8/bn_squeeze1x1"
  top: "fire8/bn_squeeze1x1"
}
layer {
  name: "fire8/expand1x1"
  type: "Convolution"
  bottom: "fire8/bn_squeeze1x1"
  top: "fire8/expand1x1"
  convolution_param {
    num_output: 256
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}

layer {  
  name: "fire8/bn_expand1x1"  
  type: "BatchNorm" 
  bottom: "fire8/expand1x1"  
  top: "fire8/bn_expand1x1"   
}

layer {
  name: "fire8/relu_expand1x1"
  type: "ReLU"
  bottom: "fire8/bn_expand1x1"
  top: "fire8/bn_expand1x1"
}
layer {
  name: "fire8/expand3x3"
  type: "Convolution"
  bottom: "fire8/bn_expand1x1"
  top: "fire8/expand3x3"
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
  }
}

layer {  
  name: "fire8/bn_expand3x3"  
  type: "BatchNorm" 
  bottom: "fire8/expand3x3"  
  top: "fire8/bn_expand3x3"   
}

layer {
  name: "fire8/relu_expand3x3"
  type: "ReLU"
  bottom: "fire8/bn_expand3x3"
  top: "fire8/bn_expand3x3"
}
layer {
  name: "fire8/concat"
  type: "Concat"
  bottom: "fire8/bn_expand1x1"
  bottom: "fire8/bn_expand3x3"
  top: "fire8/concat"
}
#fire8 ends: 512 channels

layer {
  name: "pool8"
  type: "Pooling"
  bottom: "fire8/concat"
  top: "pool8"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
#fire8 ends: 512 channels
layer {
  name: "fire9/squeeze1x1"
  type: "Convolution"
  bottom: "pool8"
  top: "fire9/squeeze1x1"
  convolution_param {
    num_output: 64
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}

layer {  
  name: "fire9/bn_squeeze1x1"  
  type: "BatchNorm" 
  bottom: "fire9/squeeze1x1"  
  top: "fire9/bn_squeeze1x1"   
}

layer {
  name: "fire9/relu_squeeze1x1"
  type: "ReLU"
  bottom: "fire9/bn_squeeze1x1"
  top: "fire9/bn_squeeze1x1"
}
layer {
  name: "fire9/expand1x1"
  type: "Convolution"
  bottom: "fire9/bn_squeeze1x1"
  top: "fire9/expand1x1"
  convolution_param {
    num_output: 256
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
  }
}

layer {  
  name: "fire9/bn_expand1x1"  
  type: "BatchNorm" 
  bottom: "fire9/expand1x1"  
  top: "fire9/bn_expand1x1"   
}

layer {
  name: "fire9/relu_expand1x1"
  type: "ReLU"
  bottom: "fire9/bn_expand1x1"
  top: "fire9/bn_expand1x1"
}
layer {
  name: "fire9/expand3x3"
  type: "Convolution"
  bottom: "fire9/bn_expand1x1"
  top: "fire9/expand3x3"
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
  }
}

layer {  
  name: "fire9/bn_expand3x3"  
  type: "BatchNorm" 
  bottom: "fire9/expand3x3"  
  top: "fire9/bn_expand3x3"   
}

layer {
  name: "fire9/relu_expand3x3"
  type: "ReLU"
  bottom: "fire9/bn_expand3x3"
  top: "fire9/bn_expand3x3"
}
layer {
  name: "fire9/concat"
  type: "Concat"
  bottom: "fire9/bn_expand1x1"
  bottom: "fire9/bn_expand3x3"
  top: "fire9/concat"
}
#fire9 ends: 512 channels


layer {
  name: "conv10_new"
  type: "Convolution"
  bottom: "fire9/concat"
  top: "conv10"
  convolution_param {
    num_output: 3
    kernel_size: 1
    weight_filler {
      type: "gaussian"
      mean: 0.0
      std: 0.01
    }
  }
}

layer {
  name: "pool10"
  type: "Pooling"
  bottom: "conv10"
  top: "pool10"
  pooling_param {
    pool: AVE
    global_pooling: true
  }
}

# loss, top1, top5
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "pool10"
  bottom: "label"
  top: "loss"
  include {
#    phase: TRAIN
  }
}
layer {
  name: "accuracy"
  type: "Accuracy"
  bottom: "pool10"
  bottom: "label"
  top: "accuracy"
  #include {
  #  phase: TEST
  #}
}

在最后一层卷积层conv10中的num_output修改类别数量。

模型超参配置文件

solver.prototxt

xml 复制代码
test_iter: 2000 #not subject to iter_size
test_interval: 1000000
# base_lr: 0.0001
base_lr: 0.005       # 学习率
display: 40
# max_iter: 600000
max_iter: 200000    # 迭代数
iter_size: 2 #global batch size = batch_size * iter_size
lr_policy: "poly"
power: 1.0 #linearly decrease LR
momentum: 0.9
weight_decay: 0.0002
snapshot: 10000     # 每多少次迭代保存一个模型
snapshot_prefix: "/data/zxc/classfication/model/model_cotta/cotta_"   # 模型保存路径
solver_mode: GPU
random_seed: 42
net: "./trainNets_drive/trainval.prototxt"   # 网络结构配置文件的路径 
test_initialization: false
average_loss: 40
  • max_iter:caffe用的是迭代数而不是pytorch的轮数。pytorch中训练完全部的训练集为一轮,而caffe中训练完一个batch_size的数据为一个迭代。如果想要等价与轮数的话,一轮就等于:len(train_data) / batch_size。如果有余数就要看pytorch里的dataloader里面设置舍去还是为一个batch,如果舍去就是向下取整,如果不舍去就是向上取整;
  • snapshot_prefix:最后一部分为每个保存模型的前缀,如图:

运行命令

将运行命令写入bash文件中:

train.sh

bash 复制代码
/home/seg/anaconda3/envs/zxc/bin/caffe train -gpu 1 -solver ./solvers/solver_3.prototxt -weights=/data/classfication/model/model_cotta/cotta__iter_200000.caffemodel 2>&1 | tee log_3_4_class.txt 
  • -gpu:选择哪块卡,如果就一块就是0;
  • -solver:后面跟网络超参配置文件路径;
  • -weights:后面跟预训练模型,可以用官方给的squeezenet的caffe版本的预训练模型,我这里是训练中断从断点继续训练

编写完成后source activate 环境名称进入source环境,然后source train.sh运行bash文件就能开始训练。

相关推荐
电子手信2 分钟前
知识中台在多语言客户中的应用
大数据·人工智能·自然语言处理·数据挖掘·知识图谱
不高明的骗子3 分钟前
【深度学习之一】2024最新pytorch+cuda+cudnn下载安装搭建开发环境
人工智能·pytorch·深度学习·cuda
Chef_Chen14 分钟前
从0开始学习机器学习--Day33--机器学习阶段总结
人工智能·学习·机器学习
搏博15 分钟前
神经网络问题之:梯度不稳定
人工智能·深度学习·神经网络
Sxiaocai31 分钟前
使用 PyTorch 实现并训练 VGGNet 用于 MNIST 分类
pytorch·深度学习·分类
GL_Rain32 分钟前
【OpenCV】Could NOT find TIFF (missing: TIFF_LIBRARY TIFF_INCLUDE_DIR)
人工智能·opencv·计算机视觉
shansjqun37 分钟前
教学内容全覆盖:航拍杂草检测与分类
人工智能·分类·数据挖掘
狸克先生39 分钟前
如何用AI写小说(二):Gradio 超简单的网页前端交互
前端·人工智能·chatgpt·交互
baiduopenmap1 小时前
百度世界2024精选公开课:基于地图智能体的导航出行AI应用创新实践
前端·人工智能·百度地图
小任同学Alex1 小时前
浦语提示词工程实践(LangGPT版,服务器上部署internlm2-chat-1_8b,踩坑很多才完成的详细教程,)
人工智能·自然语言处理·大模型